Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 22(3): 296-305, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23281053

RESUMO

Insulin is a key hormone controlling glucose homeostasis. All known vertebrate insulin analogs have a classical structure with three 100% conserved disulfide bonds that are essential for structural stability and thus the function of insulin. It might be hypothesized that an additional disulfide bond may enhance insulin structural stability which would be highly desirable in a pharmaceutical use. To address this hypothesis, we designed insulin with an additional interchain disulfide bond in positions A10/B4 based on Cα-Cα distances, solvent exposure, and side-chain orientation in human insulin (HI) structure. This insulin analog had increased affinity for the insulin receptor and apparently augmented glucodynamic potency in a normal rat model compared with HI. Addition of the disulfide bond also resulted in a 34.6°C increase in melting temperature and prevented insulin fibril formation under high physical stress even though the C-terminus of the B-chain thought to be directly involved in fibril formation was not modified. Importantly, this analog was capable of forming hexamer upon Zn addition as typical for wild-type insulin and its crystal structure showed only minor deviations from the classical insulin structure. Furthermore, the additional disulfide bond prevented this insulin analog from adopting the R-state conformation and thus showing that the R-state conformation is not a prerequisite for binding to insulin receptor as previously suggested. In summary, this is the first example of an insulin analog featuring a fourth disulfide bond with increased structural stability and retained function.


Assuntos
Antígenos CD/metabolismo , Cistina/química , Glucose/metabolismo , Hipoglicemiantes/química , Insulina Regular Humana/análogos & derivados , Receptor de Insulina/metabolismo , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Substituição de Aminoácidos , Animais , Transporte Biológico/efeitos dos fármacos , Glicemia/análise , Células Cultivadas , Cistina/metabolismo , Relação Dose-Resposta a Droga , Estabilidade de Medicamentos , Humanos , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/metabolismo , Hipoglicemiantes/farmacologia , Insulina Regular Humana/química , Insulina Regular Humana/genética , Insulina Regular Humana/metabolismo , Insulina Regular Humana/farmacologia , Proteínas Mutantes/administração & dosagem , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Proteínas Mutantes/farmacologia , Conformação Proteica , Estabilidade Proteica , Ratos , Ratos Mutantes , Ratos Wistar , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Zinco/metabolismo
2.
Chembiochem ; 12(16): 2448-55, 2011 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-21905194

RESUMO

Chemical modifications of proteins are increasingly important in the development of protein drugs with fine-tuned properties. Regioselective modification, such as the chemoselective alkylation of an unpaired cysteine residue, is a prerequisite for obtaining homogenous protein products. The introduction of an unpaired Cys into the Cys-rich protein, insulin, was investigated by using a Cys scan. This was challenging as the introduced Cys could interfere with insulin's three existing disulfide bonds. However, eight insulin precursors were expressed in Saccharomyces cerevisiae with good yields. Although extensive post-translational modifications of the unpaired Cys were observed, the majority could be removed by selective reduction. An example Cys(7) insulin analogue was modified with a PEGylated maleimide moiety. The new variant was active in in vitro and in vivo models. Our results show that even small Cys-rich proteins can be expressed with additional unpaired Cys in meaningful yields and further chemically modified, while maintaining their biological activity.


Assuntos
Cisteína/química , Insulina/análogos & derivados , Alquilação , Animais , Cromatografia Líquida de Alta Pressão , Dissulfetos/química , Insulina/genética , Insulina/metabolismo , Masculino , Maleimidas/química , Polietilenoglicóis/química , Ratos , Ratos Wistar , Estereoisomerismo , Espectrometria de Massas em Tandem
3.
Biochem Biophys Res Commun ; 376(2): 380-3, 2008 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-18782558

RESUMO

In this publication we describe a peptide insulin receptor antagonist, S661, which is a single chain peptide of 43 amino acids. The affinity of S661 for the insulin receptor is comparable to that of insulin and the selectivity for the insulin receptor versus the IGF-1 receptor is higher than that of insulin itself. S661 is also an antagonist of the insulin receptor of other species such as pig and rat, and it also has considerable affinity for hybrid insulin/IGF-1 receptors. S661 completely inhibits insulin action, both in cellular assays and in vivo in rats. A biosynthetic version called S961 which is identical to S661 except for being a C-terminal acid seems to have properties indistinguishable from those of S661. These antagonists provide a useful research tool for unraveling biochemical mechanisms involving the insulin receptor and could form the basis for treatment of hypoglycemic conditions.


Assuntos
Antagonistas da Insulina/farmacologia , Peptídeos/farmacologia , Receptor de Insulina/antagonistas & inibidores , Sequência de Aminoácidos , Animais , Humanos , Insulina/metabolismo , Insulina/farmacologia , Antagonistas da Insulina/química , Antagonistas da Insulina/metabolismo , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/metabolismo , Ratos , Ratos Zucker , Receptor de Insulina/metabolismo
4.
Eur J Pharmacol ; 509(2-3): 211-7, 2005 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-15733558

RESUMO

Sensory nerve desensitization by capsaicin has been shown to improve the diabetic condition in Zucker Diabetic Fatty rats. However, administration of capsaicin to adult rats is associated with an increased mortality. Therefore, in this experiment, we examined the influence of resiniferatoxin, a tolerable analogue of capsaicin suitable for in vivo use, on the diabetic condition of Zucker Diabetic Fatty rats. A single subcutaneous injection of resiniferatoxin (0.01 mg/kg) to these rats was tolerable, with no mortality. When administered to early diabetic rats at 15 weeks of age, the further deterioration of glucose homeostasis was prevented by resiniferatoxin. Further, when administered to overtly diabetic rats at 19 weeks of age, resiniferatoxin markedly improved glucose tolerance at two weeks after administration and this was accompanied by an increased insulin response to oral glucose as well as a reduction in the plasma levels of dipeptidyl peptidase IV. Therefore, resiniferatoxin is a safe alternative to capsaicin for further investigations of the role of the sensory nerves in experimental diabetes.


Assuntos
Diabetes Mellitus Tipo 2/fisiopatologia , Dipeptidil Peptidase 4/sangue , Diterpenos/farmacologia , Insulina/metabolismo , Neurônios Aferentes/efeitos dos fármacos , Obesidade/fisiopatologia , Animais , Área Sob a Curva , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/prevenção & controle , Glucose/administração & dosagem , Glucose/farmacocinética , Teste de Tolerância a Glucose , Insulina/sangue , Secreção de Insulina , Neurônios Aferentes/fisiologia , Obesidade/sangue , Obesidade/prevenção & controle , Ratos , Ratos Zucker , Fatores de Tempo
5.
Exp Diabesity Res ; 4(2): 93-105, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14630571

RESUMO

The incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are important in blood glucose regulation. However, both incretin hormones are rapidly degraded by the enzyme dipeptidyl peptidase IV (DPPIV). The concept of DPPIV inhibition as a treatment for type 2 diabetes was evaluated in a new large animal model of insulin-deficient diabetes and reduced beta-cell mass, the nicotinamide (NIA) (67 mg/kg) and streptozotocin (STZ) (125 mg/kg)-treated minipig, using the DPPIV inhibitor, valine pyrrolidide (VP) (50 mg/kg). VP did not significantly affect levels of intact GLP-1 but increased levels of intact GIP (from 4543 +/- 1880 to 9208 +/- 3267 pM x min; P <.01), thus improving glucose tolerance (area under the curve [AUC] for glucose reduced from 1904 +/- 480 to 1582 +/- 353 mM x min; P =.05). VP did not increase insulin levels during the oral glucose tolerance test (OGTT) but increased the insulinogenic index in normal animals (from 83 +/- 42 to 192 +/- 108; P <.05), but not after NIA + STZ, possibly because of less residual insulin secretory capacity in these animals. GIP seems to contribute to the antihyperglycemic effect of VP in this model; however, additional mechanisms for the effect of DPPIV inhibition cannot be excluded. The authors conclude that DPPIV inhibitors may be useful to treat type 2 diabetes, even when this is due to reduced beta-cell mass.


Assuntos
Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Polipeptídeo Inibidor Gástrico/farmacologia , Intolerância à Glucose/fisiopatologia , Ilhotas Pancreáticas/fisiopatologia , Pirrolidinas/farmacologia , Valina/análogos & derivados , Valina/farmacologia , Animais , Glicemia/metabolismo , Cateterismo Venoso Central , Tolerância a Medicamentos , Glucose/farmacologia , Intolerância à Glucose/prevenção & controle , Teste de Tolerância a Glucose , Ilhotas Pancreáticas/efeitos dos fármacos , Masculino , Suínos , Porco Miniatura
6.
Proc Natl Acad Sci U S A ; 100(8): 4435-9, 2003 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-12684539

RESUMO

Insulin is thought to elicit its effects by crosslinking the two extracellular alpha-subunits of its receptor, thereby inducing a conformational change in the receptor, which activates the intracellular tyrosine kinase signaling cascade. Previously we identified a series of peptides binding to two discrete hotspots on the insulin receptor. Here we show that covalent linkage of such peptides into homodimers or heterodimers results in insulin agonists or antagonists, depending on how the peptides are linked. An optimized agonist has been shown, both in vitro and in vivo, to have a potency close to that of insulin itself. The ability to construct such peptide derivatives may offer a path for developing agonists or antagonists for treatment of a wide variety of diseases.


Assuntos
Peptídeos/farmacologia , Receptor de Insulina/agonistas , Receptor de Insulina/antagonistas & inibidores , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Sequência de Aminoácidos , Animais , Dimerização , Humanos , Técnicas In Vitro , Insulina/farmacologia , Cinética , Lipídeos/biossíntese , Masculino , Camundongos , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/genética , Subunidades Proteicas , Ratos , Ratos Wistar , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA