RESUMO
Imprinting disorders are a group of congenital diseases caused by dysregulation of genomic imprinting, affecting prenatal and postnatal growth, neurocognitive development, metabolism and cancer predisposition. Aberrant expression of imprinted genes can be achieved through different mechanisms, classified into epigenetic - if not involving DNA sequence change - or genetic in the case of altered genomic sequence. Despite the underlying mechanism, the phenotype depends on the parental allele affected and opposite phenotypes may result depending on the involvement of the maternal or the paternal chromosome. Imprinting disorders are largely underdiagnosed because of the broad range of clinical signs, the overlap of presentation among different disorders, the presence of mild phenotypes, the mitigation of the phenotype with age and the limited availability of molecular techniques employed for diagnosis. This review briefly illustrates the currently known human imprinting disorders, highlighting endocrinological aspects of pediatric interest.
Assuntos
Anormalidades Múltiplas/genética , Diabetes Mellitus/genética , Impressão Genômica/genética , Doenças do Recém-Nascido/genética , Deficiência Intelectual/genética , Pseudo-Hipoparatireoidismo/genética , Puberdade Precoce/genética , Dissomia Uniparental/genética , Criança , Humanos , SíndromeRESUMO
The pathogenic variants in the neuroblastoma-amplified sequence (NBAS) are associated with a clinical spectrum involving the hepatic, skeletal, ocular, and immune systems. Here, we report on two unrelated subjects with a complex phenotype solved by whole-exome sequencing, who shared a synonymous change in NBAS that was documented to affect the transcript processing and co-occurring with a truncating change. Starting from these two cases, we systematically assessed the clinical information available for all subjects with biallelic NBAS pathogenic variants (73 cases in total). We revealed a recognizable facial profile (hypotelorism, thin lips, pointed chin, and "progeroid" appearance) determined by using DeepGestalt facial recognition technology, and we provide evidence for the occurrence of genotype-phenotype correlations. Notably, severe hepatic involvement was associated with variants affecting the NBAS-Nter and Sec39 domains, whereas milder liver involvement and immunodeficiency were generally associated with variants located at the N-terminus and C-terminus of the protein. Remarkably, no patient was reported to carry two nonsense variants, suggesting lethality of complete NBAS loss-of-function.
Assuntos
Anormalidades Múltiplas/genética , Sequenciamento do Exoma/métodos , Proteínas de Neoplasias/genética , Mutação Silenciosa , Criança , Pré-Escolar , Feminino , Estudos de Associação Genética , Humanos , Mutação com Perda de Função , Masculino , Proteínas de Neoplasias/química , Linhagem , Domínios ProteicosRESUMO
Spinocerebellar ataxia 28 is an autosomal dominant neurodegenerative disorder caused by missense mutations affecting the proteolytic domain of AFG3L2, a major component of the mitochondrial m-AAA protease. However, little is known of the underlying pathogenetic mechanisms or how to treat patients with SCA28. Currently available Afg3l2 mutant mice harbour deletions that lead to severe, early-onset neurological phenotypes that do not faithfully reproduce the late-onset and slowly progressing SCA28 phenotype. Here we describe production and detailed analysis of a new knock-in murine model harbouring an Afg3l2 allele carrying the p.Met665Arg patient-derived mutation. Heterozygous mutant mice developed normally but adult mice showed signs of cerebellar ataxia detectable by beam test. Although cerebellar pathology was negative, electrophysiological analysis showed a trend towards increased spontaneous firing in Purkinje cells from heterozygous mutants with respect to wild-type controls. As homozygous mutants died perinatally with evidence of cardiac atrophy, for each genotype we generated mouse embryonic fibroblasts (MEFs) to investigate mitochondrial function. MEFs from mutant mice showed altered mitochondrial bioenergetics, with decreased basal oxygen consumption rate, ATP synthesis and mitochondrial membrane potential. Mitochondrial network formation and morphology was altered, with greatly reduced expression of fusogenic Opa1 isoforms. Mitochondrial alterations were also detected in cerebella of 18-month-old heterozygous mutants and may be a hallmark of disease. Pharmacological inhibition of de novo mitochondrial protein translation with chloramphenicol caused reversal of mitochondrial morphology in homozygous mutant MEFs, supporting the relevance of mitochondrial proteotoxicity for SCA28 pathogenesis and therapy development.
Assuntos
Proteases Dependentes de ATP/genética , ATPases Associadas a Diversas Atividades Celulares/genética , Modelos Animais de Doenças , Mitocôndrias/metabolismo , Ataxias Espinocerebelares/congênito , Animais , Feminino , Técnicas de Introdução de Genes , Potencial da Membrana Mitocondrial , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/metabolismo , Mutação de Sentido Incorreto , Células de Purkinje/fisiologia , Células de Purkinje/ultraestrutura , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/metabolismo , Ataxias Espinocerebelares/patologiaRESUMO
OBJECTIVE: To compare tumor risk in the 4 Beckwith-Wiedemann syndrome (BWS) molecular subgroups: Imprinting Control Region 1 Gain of Methylation (ICR1-GoM), Imprinting Control Region 2 Loss of Methylation (ICR2-LoM), Chromosome 11p15 Paternal Uniparental Disomy (UPD), and Cyclin-Dependent Kinase Inhibitor 1C gene (CDKN1C) mutation. STUDY DESIGN: Studies on BWS and tumor development published between 2000 and 2015 providing (epi)genotype-cancer correlations with histotype data were reviewed and meta-analysed with cancer histotypes as measured outcome and (epi)genotype as exposure. RESULTS: A total of 1370 patients with BWS were included: 102 developed neoplasms (7.4%). Tumor prevalence was 2.5% in ICR2-LoM, 13.8% in UPD, 22.8% in ICR1-GoM, and 8.6% in patients with CDKN1C mutations. Cancer ORs were 12.8 in ICR1-GoM, 6.5 in UPD, and 2.9 in patients with CDKN1C mutations compared with patients with ICR2-LoM. Wilms tumor was associated with ICR1-GoM (OR 68.3) and UPD (OR 13.2). UPD also was associated with hepatoblastoma (OR 5.2) and adrenal carcinoma (OR 7.0), and CDKN1C mutations with neuroblastic tumors (OR 7.2). CONCLUSION: Cancer screening in BWS could be differentiated on the basis of (epi)genotype and target specific histotypes. Patients with ICR1-GoM and UPD should undergo renal ultrasonography scanning, given their risk of Wilms tumor. Alpha feto protein monitoring for heptaoblastoma is suggested in patients with UPD. Adrenal carcinoma may deserve screening in patients with UPD. Patients with CDKN1C mutations may deserve neuroblastoma screening based on urinary markers and ultrasonography scanning. Finally, screening appears questionable in cases of ICR2-LoM, given low tumor risk.