RESUMO
In Torpedo marmorata, the vitelline envelope (VE), an extracellular envelope surrounding the growing oocyte, consists of fibrils and amorphous materials that are deposited in the perivitelline space starting from the initial steps of oocyte growth. SDS-PAGE analysis of the isolated and purified VE reveals that it consists of different glycoproteins. Furthermore, our investigations showed that the 120 and 66 kDa glycoproteins are positive to an antibody directed against gp69/64 of the Xenopus laevis VE and are synthesized under the control of 17beta-estradiol in the liver, that, together follicle cells and the oocyte, is the biosynthetic site of VE components.
Assuntos
Folículo Ovariano/ultraestrutura , Torpedo/fisiologia , Membrana Vitelina/ultraestrutura , Animais , Eletroforese em Gel de Poliacrilamida , Estradiol/farmacologia , Feminino , Glicoproteínas/análise , Glicoproteínas/metabolismo , Imuno-Histoquímica , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Proteínas de Membrana/análise , Proteínas de Membrana/metabolismo , Oócitos/metabolismo , Oócitos/ultraestrutura , Folículo Ovariano/metabolismo , Membrana Vitelina/química , Membrana Vitelina/metabolismoRESUMO
Using polyclonal antibodies, we examined the localization of 3beta-hydroxysteroid dehydrogenase (3beta-HSD) and 17beta-hydroxysteroid dehydrogenase (17beta-HSD) as markers of the site of steroidogenetic activity during the spermatogenesis of Torpedo marmorata. These enzymes play a central role in the biosynthesis of steroid hormones, including androgen and oestrogen production. We demonstrated that in the spotted ray testis, Sertoli and Leydig cells, as well as spermatogonia, show a positive reaction to anti 3beta-HSD and 17beta-HSD antibodies. In particular, we demonstrated that Sertoli cells show a positive reaction to anti 3beta-HSD and 17beta-HSD antibodies in cysts containing spermatogonia and spermatozoa, while Leydig cells present a positive reaction only when they are located between cysts containing meiotic cells. This study strongly suggests that, as hypothesised in our previous study [Prisco, M., Liguoro, A., D'Onghia, B., Ricchiari, L., Andreuccetti, P., Angelini, F., 2002. Fine structure of Leydig and Sertoli cells in the testis of immature and mature spotted ray Torpedo marmorata. Mol. Reprod. Dev. 63, 192-201.], Sertoli and Leydig cells are differently involved in the hormonal control of spermatogenesis: Sertoli cells before the beginning of meiosis and after spermiation, Leydig cells only during meiosis phase. Moreover, the present paper deals with the possibility that also spermatogonia are engaged in the production of androgen hormones, as they are characterized by the presence of 3beta-HSD and 17beta-HSD enzymes, and show the ultrastructural features of steroid hormone-producing cells.
Assuntos
17-Hidroxiesteroide Desidrogenases/metabolismo , 3-Hidroxiesteroide Desidrogenases/metabolismo , Testículo/metabolismo , Torpedo/metabolismo , Animais , Imuno-Histoquímica , Masculino , Meiose/fisiologia , Espermatogênese/fisiologia , Espermatogônias/metabolismoRESUMO
We investigated the presence of cadherins, Ca++ dependent cell-cell adhesion molecules, during the development and maturation of cysts in the testis of the spotted ray Torpedo marmorata. Using different anti-cadherin antibodies, we provide evidence by means of immunohistochemistry and immunoblotting that cadherins are involved in the interaction between Sertoli and germ cells. During the development and maturation of cysts, in fact, cadherins occur between Sertoli and germ cells when they begin to interact to build a cyst. Later on, the presence of cadherins between Sertoli and germ cells persists; furthermore, during the formation of spermatoblast, it is also evident at the level of indentations, arising from Sertoli cells and encompassing germ cells. Finally, the present findings strongly suggest that cadherins are also involved in the spermiogenesis as germ cells, when male gamete differentiation starts, are intensively stained, while, when spermiation is completed, the spermatozoa appear unlabeled.
Assuntos
Caderinas/metabolismo , Células de Sertoli/fisiologia , Espermatozoides/fisiologia , Testículo/crescimento & desenvolvimento , Torpedo/fisiologia , Animais , Western Blotting , Imuno-Histoquímica , Masculino , Células de Sertoli/citologia , Espermatogônias/citologia , Espermatogônias/fisiologia , Espermatozoides/citologiaRESUMO
In this article, we investigated the distribution of pituitary adenylate cyclase-activating polypeptide (PACAP) and its mRNA by immunohistochemistry, in situ hybridization, and RT-PCR techniques, in the central nervous system of the elasmobranch Torpedo marmorata. RT-PCR analysis showed that the CNS of T. marmorata expresses a messenger encoding PACAP. The immunohistochemistry and in situ hybridization patterns were partly overlapping, with a major expression in the hypothalamo-pituitary region and, surprisingly, in the saccus vasculosus. Our results show that, in T. marmorata, PACAP is synthesized and widely distributed in the CNS, suggesting an as yet unidentified role for this peptide in elasmobranch brain physiology.
Assuntos
Encéfalo/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Torpedo/genética , Animais , RNA Mensageiro/genéticaRESUMO
This article is a cytological and molecular investigation on the occurrence of apoptosis during spermatogenesis in Torpedo, a cartilaginous fish characterised by a typical cystic testis. Using DNA fragmentation and Bak gene expression, it demonstrated that germ cells undergo apoptosis only at the stages of spermatocyte and spermatid, and degeneration also involves Sertoli but not Leydig cells. In immature cysts, this cellular process probably occurs when the ratio of germ cells to the only Sertoli cell (SC) forming the spermatoblast changes. Apoptosis also takes place in mature cysts after sperm release to eliminate most of the SCs. Few of them, however, become cytoplasts and probably continue secreting androgens so as to control the final events of spermatogenesis, i.e., passage of spermatozoa through the ductus deferentes. Finally, the present investigation demonstrated that, in Torpedo testis, Bak mRNA is expressed during spermatogenesis, thus suggesting that the mitochondrial pathway might be active. This observation in one of the oldest vertebrate classes indicates that, in all vertebrates, the apoptotic process during spermatogenesis is conserved, contributing to testicular homeostasis.