Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep Med ; 3(2): 100502, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35243415

RESUMO

Among men, prostate cancer is the second leading cause of cancer-associated mortality, with advanced disease remaining a major clinical challenge. We describe a small molecule, SU086, as a therapeutic strategy for advanced prostate cancer. We demonstrate that SU086 inhibits the growth of prostate cancer cells in vitro, cell-line and patient-derived xenografts in vivo, and ex vivo prostate cancer patient specimens. Furthermore, SU086 in combination with standard of care second-generation anti-androgen therapies displays increased impairment of prostate cancer cell and tumor growth in vitro and in vivo. Cellular thermal shift assay reveals that SU086 binds to heat shock protein 90 (HSP90) and leads to a decrease in HSP90 levels. Proteomic profiling demonstrates that SU086 binds to and decreases HSP90. Metabolomic profiling reveals that SU086 leads to perturbation of glycolysis. Our study identifies SU086 as a treatment for advanced prostate cancer as a single agent or when combined with second-generation anti-androgens.


Assuntos
Neoplasias da Próstata , Proteômica , Proliferação de Células , Glicólise , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico
2.
NPJ Breast Cancer ; 7(1): 141, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34711841

RESUMO

Breast cancer remains the second most lethal cancer among women in the United States and triple-negative breast cancer is the most aggressive subtype with limited treatment options. Trop2, a cell membrane glycoprotein, is overexpressed in almost all epithelial cancers. In this study, we demonstrate that Trop2 is overexpressed in triple-negative breast cancer (TNBC), and downregulation of Trop2 delays TNBC cell and tumor growth supporting the oncogenic role of Trop2 in breast cancer. Through proteomic profiling, we discovered a metabolic signature comprised of TALDO1, GPI, LDHA, SHMT2, and ADK proteins that were downregulated in Trop2-depleted breast cancer tumors. The identified oncogene-mediated metabolic gene signature is significantly upregulated in TNBC patients across multiple RNA-expression clinical datasets. Our study further reveals that the metabolic gene signature reliably predicts poor survival of breast cancer patients with early stages of the disease. Taken together, our study identified a new five-gene metabolic signature as an accurate predictor of breast cancer outcome.

3.
Cancer Res ; 81(9): 2510-2521, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33637565

RESUMO

Prostate cancer is one of the most common malignancies worldwide, yet limited tools exist for prognostic risk stratification of the disease. Identification of new biomarkers representing intrinsic features of malignant transformation and development of prognostic imaging technologies are critical for improving treatment decisions and patient survival. In this study, we analyzed radical prostatectomy specimens from 422 patients with localized disease to define the expression pattern of methionine aminopeptidase II (MetAP2), a cytosolic metalloprotease that has been identified as a druggable target in cancer. MetAP2 was highly expressed in 54% of low-grade and 59% of high-grade cancers. Elevated levels of MetAP2 at diagnosis were associated with shorter time to recurrence. Controlled self-assembly of a synthetic small molecule enabled design of the first MetAP2-activated PET imaging tracer for monitoring MetAP2 activity in vivo. The nanoparticles assembled upon MetAP2 activation were imaged in single prostate cancer cells with post-click fluorescence labeling. The fluorine-18-labeled tracers successfully differentiated MetAP2 activity in both MetAP2-knockdown and inhibitor-treated human prostate cancer xenografts by micro-PET/CT scanning. This highly sensitive imaging technology may provide a new tool for noninvasive early-risk stratification of prostate cancer and monitoring the therapeutic effect of MetAP2 inhibitors as anticancer drugs. SIGNIFICANCE: This study defines MetAP2 as an early-risk stratifier for molecular imaging of aggressive prostate cancer and describes a MetAP2-activated self-assembly small-molecule PET tracer for imaging MetAP2 activity in vivo.


Assuntos
Metionil Aminopeptidases/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/enzimologia , Transdução de Sinais/genética , Animais , Antibióticos Antineoplásicos/administração & dosagem , Seguimentos , Humanos , Subunidade gama Comum de Receptores de Interleucina/deficiência , Subunidade gama Comum de Receptores de Interleucina/genética , Masculino , Metionil Aminopeptidases/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , O-(Cloroacetilcarbamoil)fumagilol/administração & dosagem , Células PC-3 , Neoplasias da Próstata/patologia , Medição de Risco/métodos , Distribuição Tecidual , Transfecção , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Cancer Res ; 81(6): 1583-1594, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33483372

RESUMO

Ferroptosis is a type of programmed cell death induced by the accumulation of lipid peroxidation and lipid reactive oxygen species in cells. It has been recently demonstrated that cancer cells are vulnerable to ferroptosis inducers (FIN). However, the therapeutic potential of FINs in prostate cancer in preclinical settings has not been explored. In this study, we demonstrate that mediators of ferroptosis, solute carrier family 7 member 11, SLC3A2, and glutathione peroxidase, are expressed in treatment-resistant prostate cancer. We further demonstrate that treatment-resistant prostate cancer cells are sensitive to two FINs, erastin and RSL3. Treatment with erastin and RSL3 led to a significant decrease in prostate cancer cell growth and migration in vitro and significantly delayed the tumor growth of treatment-resistant prostate cancer in vivo, with no measurable side effects. Combination of erastin or RSL3 with standard-of-care second-generation antiandrogens for advanced prostate cancer halted prostate cancer cell growth and migration in vitro and tumor growth in vivo. These results demonstrate the potential of erastin or RSL3 independently and in combination with standard-of-care second-generation antiandrogens as novel therapeutic strategies for advanced prostate cancer. SIGNIFICANCE: These findings reveal that induction of ferroptosis is a new therapeutic strategy for advanced prostate cancer as a monotherapy and in combination with second-generation antiandrogens.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carbolinas/farmacologia , Ferroptose/efeitos dos fármacos , Piperazinas/farmacologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Sistema y+ de Transporte de Aminoácidos/metabolismo , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/uso terapêutico , Androstenos/farmacologia , Androstenos/uso terapêutico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Carbolinas/uso terapêutico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Cadeia Pesada da Proteína-1 Reguladora de Fusão/metabolismo , Humanos , Masculino , Camundongos , Estadiamento de Neoplasias , Nitrilas/farmacologia , Nitrilas/uso terapêutico , Feniltioidantoína/farmacologia , Feniltioidantoína/uso terapêutico , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Piperazinas/uso terapêutico , Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/diagnóstico , Neoplasias de Próstata Resistentes à Castração/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Oncogene ; 40(3): 663-676, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33219316

RESUMO

Prostate cancer is responsible for over 30,000 US deaths annually, attributed largely to incurable metastatic disease. Here, we demonstrate that high levels of plectin are associated with localized and metastatic human prostate cancer when compared to benign prostate tissues. Knock-down of plectin inhibits prostate cancer cell growth and colony formation in vitro, and growth of prostate cancer xenografts in vivo. Plectin knock-down further impairs aggressive and invasive cellular behavior assessed by migration, invasion, and wound healing in vitro. Consistently, plectin knock-down cells have impaired metastatic colonization to distant sites including liver, lung, kidney, bone, and genitourinary system. Plectin knock-down inhibited number of metastases per organ, as well as decreased overall metastatic burden. To gain insights into the role of plectin in prostate cancer growth and metastasis, we performed proteomic analysis of prostate cancer plectin knock-down xenograft tissues. Gene set enrichment analysis shows an increase in levels of proteins involved with extracellular matrix and laminin interactions, and a decrease in levels of proteins regulating amino acid metabolism, cytoskeletal proteins, and cellular response to stress. Collectively these findings demonstrate that plectin is an important regulator of prostate cancer cell growth and metastasis.


Assuntos
Proliferação de Células , Proteínas de Neoplasias/metabolismo , Plectina/metabolismo , Neoplasias da Próstata/metabolismo , Animais , Linhagem Celular Tumoral , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Metástase Neoplásica , Proteínas de Neoplasias/genética , Transplante de Neoplasias , Plectina/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia
6.
Br J Cancer ; 124(5): 896-900, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33288843

RESUMO

Distinguishing clinically significant from indolent prostate cancer (PC) is a major clinical challenge. We utilised targeted protein biomarker discovery approach to identify biomarkers specific for pro-metastatic PC. Serum samples from the cancer-free group; Cambridge Prognostic Group 1 (CPG1, low risk); CPG5 (high risk) and metastatic disease were analysed using Olink Proteomics panels. Tissue validation was performed by immunohistochemistry in a radical prostatectomy cohort (n = 234). We discovered that nine proteins (pleiotrophin (PTN), MK, PVRL4, EPHA2, TFPI-2, hK11, SYND1, ANGPT2, and hK14) were elevated in metastatic PC patients when compared to other groups. PTN levels were increased in serum from men with CPG5 compared to benign and CPG1. High tissue PTN level was an independent predictor of biochemical recurrence and metastatic progression in low- and intermediate-grade disease. These findings suggest that PTN may represent a novel biomarker for the presence of poor prognosis local disease with the potential to metastasise warranting further investigation.


Assuntos
Biomarcadores Tumorais/sangue , Proteínas de Transporte/sangue , Citocinas/sangue , Prostatectomia/mortalidade , Neoplasias da Próstata/patologia , Seguimentos , Humanos , Masculino , Prognóstico , Neoplasias da Próstata/sangue , Neoplasias da Próstata/cirurgia , Taxa de Sobrevida
7.
Proc Natl Acad Sci U S A ; 117(4): 2032-2042, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31932422

RESUMO

Resistance to androgen deprivation therapy, or castration-resistant prostate cancer (CRPC), is often accompanied by metastasis and is currently the ultimate cause of prostate cancer-associated deaths in men. Recently, secondary hormonal therapies have led to an increase of neuroendocrine prostate cancer (NEPC), a highly aggressive variant of CRPC. Here, we identify that high levels of cell surface receptor Trop2 are predictive of recurrence of localized prostate cancer. Moreover, Trop2 is significantly elevated in CRPC and NEPC, drives prostate cancer growth, and induces neuroendocrine phenotype. Overexpression of Trop2 induces tumor growth and metastasis while loss of Trop2 suppresses these abilities in vivo. Trop2-driven NEPC displays a significant up-regulation of PARP1, and PARP inhibitors significantly delay tumor growth and metastatic colonization and reverse neuroendocrine features in Trop2-driven NEPC. Our findings establish Trop2 as a driver and therapeutic target for metastatic prostate cancer with neuroendocrine phenotype and suggest that high Trop2 levels could identify cancers that are sensitive to Trop2-targeting therapies and PARP1 inhibition.


Assuntos
Antígenos de Neoplasias/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias Ósseas/secundário , Carcinoma Neuroendócrino/patologia , Moléculas de Adesão Celular/metabolismo , Regulação Neoplásica da Expressão Gênica , Poli(ADP-Ribose) Polimerase-1/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Animais , Antígenos de Neoplasias/genética , Apoptose , Biomarcadores Tumorais/genética , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Carcinoma Neuroendócrino/tratamento farmacológico , Carcinoma Neuroendócrino/metabolismo , Moléculas de Adesão Celular/genética , Movimento Celular , Proliferação de Células , Seguimentos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Invasividade Neoplásica , Fenótipo , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Prognóstico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/metabolismo , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Front Oncol ; 9: 801, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31555580

RESUMO

Prostate cancer is the most commonly diagnosed cancer affecting men in the United States. The prostate is a hormone-dependent gland in which androgen hormones testosterone and dihydrotestosterone bind to and activate the androgen receptor, initiating nuclear translocation of androgen receptor and a subsequent signaling cascade. Due to the androgen dependency of the prostate, androgen deprivation therapies have emerged as first line treatment for aggressive prostate cancer. Such therapies are effective until the point at which prostate cancer, through a variety of mechanisms including but not limited to generation of ligand-independent androgen receptor splice variants, or intratumoral androgen production, overcome hormone deprivation. These cancers are androgen ablation resistant, clinically termed castration resistant prostate cancer (CRPC) and remain incurable. First-generation antiandrogens established androgen receptor blockade as a therapeutic strategy, but these therapies do not completely block androgen receptor activity. Efficacy and potency have been improved by the development of second-generation antiandrogen therapies, which remain the standard of care for patients with CRPC. Four second-generation anti-androgens are currently approved by the Food and Drug Administration (FDA); abiraterone acetate, enzalutamide, and recently approved apalutamide and darolutamide. This review is intended to provide a thorough overview of FDA approved second-generation antiandrogen discovery, treatment application, strategies for combination therapy to overcome resistance, and an insight for the potential future approaches for therapeutic inhibition of androgen receptor.

9.
Sci Transl Med ; 11(498)2019 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-31243151

RESUMO

Castration-resistant prostate cancer (CRPC) recurs after androgen deprivation therapy (ADT) and is incurable. Reactivation of androgen receptor (AR) signaling in the low androgen environment of ADT drives CRPC. This AR activity occurs through a variety of mechanisms, including up-regulation of AR coactivators such as VAV3 and expression of constitutively active AR variants such as the clinically relevant AR-V7. AR-V7 lacks a ligand-binding domain and is linked to poor prognosis. We previously showed that VAV3 enhances AR-V7 activity to drive CRPC progression. Gene expression profiling after depletion of either VAV3 or AR-V7 in CRPC cells revealed arginine vasopressin receptor 1a (AVPR1A) as the most commonly down-regulated gene, indicating that this G protein-coupled receptor may be critical for CRPC. Analysis of publicly available human PC datasets showed that AVPR1A has a higher copy number and increased amounts of mRNA in advanced PC. Depletion of AVPR1A in CRPC cells resulted in decreased cell proliferation and reduced cyclin A. In contrast, androgen-dependent PC, AR-negative PC, or nontumorigenic prostate epithelial cells, which have undetectable AVPR1A mRNA, were minimally affected by AVPR1A depletion. Ectopic expression of AVPR1A in androgen-dependent PC cells conferred castration resistance in vitro and in vivo. Furthermore, treatment of CRPC cells with the AVPR1A ligand, arginine vasopressin (AVP), activated ERK and CREB, known promoters of PC progression. A clinically safe and selective AVPR1A antagonist, relcovaptan, prevented CRPC emergence and decreased CRPC orthotopic and bone metastatic growth in mouse models. Based on these preclinical findings, repurposing AVPR1A antagonists is a promising therapeutic approach for CRPC.


Assuntos
Terapia de Alvo Molecular , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Receptores de Vasopressinas/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Indóis/farmacologia , Indóis/uso terapêutico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos Nus , Osteogênese/efeitos dos fármacos , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Proteínas Proto-Oncogênicas c-vav/metabolismo , Pirrolidinas/farmacologia , Pirrolidinas/uso terapêutico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Androgênicos/metabolismo , Receptores de Vasopressinas/genética
10.
Mol Cancer Ther ; 18(7): 1230-1242, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31028097

RESUMO

Prostate cancer remains among the leading causes of cancer-related deaths in men. Patients with aggressive disease typically undergo hormone deprivation therapy. Although treatment is initially very successful, these men commonly progress to lethal, castration-resistant prostate cancer (CRPC) in 2 to 3 years. Standard therapies for CRPC include second-generation antiandrogens, which prolong patient lifespan by only several months. It is imperative to advance our understanding of the mechanisms leading to resistance to identify new therapies for aggressive prostate cancer. This study identifies Notch1 as a therapeutic target in prostate cancer. Loss of NOTCH1 in aggressive prostate cancer cells decreases proliferation, invasion, and tumorsphere formation. Therapeutic inhibition of Notch1 activity with gamma secretase inhibitors RO4929097 or DAPT in prostate cancer cells further results in decreased proliferative abilities. Loss of NOTCH1 and treatment of immunocompromised mice bearing prostate cancer xenografts with RO4929097 display significantly impaired tumor growth. Loss of NOTCH1 additionally decreased metastatic potential of prostate cancer cells in invasion assays in vitro as well as in vivo experiments. Moreover, treatment with gamma secretase inhibitors or NOTCH1 gene deletion synergized with antiandrogen therapies, enzalutamide or abiraterone, to decrease the growth of prostate cancer cells. Combination of gamma secretase inhibitors with abiraterone significantly inhibited cell migration and invasion, while combination with enzalutamide reversed enzalutamide-induced migration and invasion. These collective findings suggest loss of NOTCH1 delays growth of CRPC and inhibits metastasis, and inhibition of Notch1 activation in conjunction with second-generation antiandrogen therapies could delay growth and progression of prostate cancer.


Assuntos
Antagonistas de Androgênios/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Receptor Notch1/genética , Antagonistas de Androgênios/farmacologia , Animais , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Metástase Neoplásica , Neoplasias da Próstata/patologia
11.
J Proteome Res ; 17(10): 3574-3585, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30200768

RESUMO

Triple negative breast cancer is an aggressive, heterogeneous disease with high recurrence and metastasis rates even with modern chemotherapy regimens and thus is in need of new therapeutics. Here, three novel synthetic analogues of chalcones, plant-based molecules that have demonstrated potency against a wide variety of cancers, were investigated as potential therapeutics for triple negative breast cancer. These compounds exhibit IC50 values of ∼5 µM in triple negative breast cancer cell lines and are more potent against triple negative breast cancer cell lines than against nontumor breast cell lines according to viability experiments. Tandem mass tag-based quantitative proteomics followed by gene set enrichment analysis and validation experiments using flow cytometry, apoptosis, and Western blot assays revealed three different anticancer mechanisms for these compounds. First, the chalcone analogues induce the unfolded protein response followed by apoptosis. Second, increases in the abundances of MHC-I pathway proteins occurs, which would likely result in immune stimulation in an organism. And third, treatment with the chalcone analogues causes disruption of the cell cycle by interfering with microtubule structure and by inducing G1 phase arrest. These data demonstrate the potential of these novel chalcone derivatives as treatments for triple negative breast cancer, though further work evaluating their efficacy in vivo is needed.


Assuntos
Antineoplásicos/farmacologia , Chalcona/farmacologia , Redes e Vias Metabólicas/efeitos dos fármacos , Proteômica/métodos , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Chalcona/química , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
12.
Mol Cancer Res ; 15(11): 1469-1480, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28811363

RESUMO

Castration-resistant prostate cancer (CRPC) progresses rapidly and is incurable. Constitutively active androgen receptor splice variants (AR-Vs) represent a well-established mechanism of therapeutic resistance and disease progression. These variants lack the AR ligand-binding domain and, as such, are not inhibited by androgen deprivation therapy (ADT), which is the standard systemic approach for advanced prostate cancer. Signaling by AR-Vs, including the clinically relevant AR-V7, is augmented by Vav3, an established AR coactivator in CRPC. Using mutational and biochemical studies, we demonstrated that the Vav3 Diffuse B-cell lymphoma homology (DH) domain interacted with the N-terminal region of AR-V7 (and full length AR). Expression of the Vav3 DH domain disrupted Vav3 interaction with and enhancement of AR-V7 activity. The Vav3 DH domain also disrupted AR-V7 interaction with other AR coactivators: Src1 and Vav2, which are overexpressed in PC. This Vav3 domain was used in proof-of-concept studies to evaluate the effects of disrupting the interaction between AR-V7 and its coactivators on CRPC cells. This disruption decreased CRPC cell proliferation and anchorage-independent growth, caused increased apoptosis, decreased migration, and resulted in the acquisition of morphological changes associated with a less aggressive phenotype. While disrupting the interaction between FL-AR and its coactivators decreased N-C terminal interaction, disrupting the interaction of AR-V7 with its coactivators decreased AR-V7 nuclear levels.Implications: This study demonstrates the potential therapeutic utility of inhibiting constitutively active AR-V signaling by disrupting coactivator binding. Such an approach is significant, as AR-Vs are emerging as important drivers of CRPC that are particularly recalcitrant to current therapies. Mol Cancer Res; 15(11); 1469-80. ©2017 AACR.


Assuntos
Neoplasias de Próstata Resistentes à Castração/metabolismo , Proteínas Proto-Oncogênicas c-vav/genética , Proteínas Proto-Oncogênicas c-vav/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Processamento Alternativo , Sítios de Ligação , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Mutação , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/terapia , Ligação Proteica , Proteínas Proto-Oncogênicas c-vav/química , Receptores Androgênicos/química , Transdução de Sinais , Regulação para Cima
13.
Proc Natl Acad Sci U S A ; 113(42): E6457-E6466, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27694579

RESUMO

Metastatic castration-resistant prostate cancer (CRPC) is the primary cause of prostate cancer-specific mortality. Defining new mechanisms that can predict recurrence and drive lethal CRPC is critical. Here, we demonstrate that localized high-risk prostate cancer and metastatic CRPC, but not benign prostate tissues or low/intermediate-risk prostate cancer, express high levels of nuclear Notch homolog 1, translocation-associated (Notch1) receptor intracellular domain. Chronic activation of Notch1 synergizes with multiple oncogenic pathways altered in early disease to promote the development of prostate adenocarcinoma. These tumors display features of epithelial-to-mesenchymal transition, a cellular state associated with increased tumor aggressiveness. Consistent with its activation in clinical CRPC, tumors driven by Notch1 intracellular domain in combination with multiple pathways altered in prostate cancer are metastatic and resistant to androgen deprivation. Our study provides functional evidence that the Notch1 signaling axis synergizes with alternative pathways in promoting metastatic CRPC and may represent a new therapeutic target for advanced prostate cancer.


Assuntos
Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptor Notch1/metabolismo , Transdução de Sinais , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Animais , Biomarcadores , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Transição Epitelial-Mesenquimal/genética , Expressão Gênica , Perfilação da Expressão Gênica , Xenoenxertos , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Proteínas Quinases Ativadas por Mitógeno , Gradação de Tumores , Metástase Neoplásica , Fenótipo , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Receptor Notch1/antagonistas & inibidores , Receptor Notch1/genética , Carga Tumoral , Quinases raf/metabolismo , Proteínas ras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA