Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 12(5)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37237488

RESUMO

Impaired adipocyte function contributes to systemic metabolic dysregulation, and altered fat mass or function increases the risk of Type 2 diabetes. EHMTs 1 and 2 (euchromatic histone lysine methyltransferases 1 and 2), also known as the G9a-like protein (GLP) and G9a, respectively, catalyze the mono- and di-methylation of histone 3 lysine 9 (H3K9) and also methylate nonhistone substrates; in addition, they can act as transcriptional coactivators independent of their methyltransferase activity. These enzymes are known to contribute to adipocyte development and function, and in vivo data indicate a role for G9a and GLP in metabolic disease states; however, the mechanisms involved in the cell-autonomous functions of G9a and GLP in adipocytes are largely unknown. Tumor necrosis factor alpha (TNFα) is a proinflammatory cytokine typically induced in adipose tissue in conditions of insulin resistance and Type 2 diabetes. Using an siRNA approach, we have determined that the loss of G9a and GLP enhances TNFα-induced lipolysis and inflammatory gene expression in adipocytes. Furthermore, we show that G9a and GLP are present in a protein complex with nuclear factor kappa B (NF-κB) in TNFα-treated adipocytes. These novel observations provide mechanistic insights into the association between adipocyte G9a and GLP expression and systemic metabolic health.

2.
Front Endocrinol (Lausanne) ; 12: 727061, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35211087

RESUMO

Botanicals have a long history of medicinal use for a multitude of ailments, and many modern pharmaceuticals were originally isolated from plants or derived from phytochemicals. Among these, artemisinin, first isolated from Artemisia annua, is the foundation for standard anti-malarial therapies. Plants of the genus Artemisia are among the most common herbal remedies across Asia and Central Europe. The species Artemisia scoparia (SCOPA) is widely used in traditional folk medicine for various liver diseases and inflammatory conditions, as well as for infections, fever, pain, cancer, and diabetes. Modern in vivo and in vitro studies have now investigated SCOPA's effects on these pathologies and its ability to mitigate hepatotoxicity, oxidative stress, obesity, diabetes, and other disease states. This review focuses on the effects of SCOPA that are particularly relevant to metabolic health. Indeed, in recent years, an ethanolic extract of SCOPA has been shown to enhance differentiation of cultured adipocytes and to share some properties of thiazolidinediones (TZDs), a class of insulin-sensitizing agonists of the adipogenic transcription factor PPARγ. In a mouse model of diet-induced obesity, SCOPA diet supplementation lowered fasting insulin and glucose levels, while inducing metabolically favorable changes in adipose tissue and liver. These observations are consistent with many lines of evidence from various tissues and cell types known to contribute to metabolic homeostasis, including immune cells, hepatocytes, and pancreatic beta-cells. Compounds belonging to several classes of phytochemicals have been implicated in these effects, and we provide an overview of these bioactives. The ongoing global epidemics of obesity and metabolic disease clearly require novel therapeutic approaches. While the mechanisms involved in SCOPA's effects on metabolic, anti-inflammatory, and oxidative stress pathways are not fully characterized, current data support further investigation of this plant and its bioactives as potential therapeutic agents in obesity-related metabolic dysfunction and many other conditions.


Assuntos
Artemisia , Scoparia , Animais , Artemisia/química , Artemisia/metabolismo , Insulina/metabolismo , Camundongos , Obesidade/tratamento farmacológico , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Scoparia/metabolismo
3.
Obesity (Silver Spring) ; 28(9): 1726-1735, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32741148

RESUMO

OBJECTIVE: An ethanolic extract of Artemisia scoparia (SCO) improves adipose tissue function and reduces negative metabolic consequences of high-fat feeding. A. scoparia has a long history of medicinal use across Asia and has anti-inflammatory effects in various cell types and disease models. The objective of the current study was to investigate SCO's effects on inflammation in cells relevant to metabolic health. METHODS: Inflammatory responses were assayed in cultured adipocytes, macrophages, and insulinoma cells by quantitative polymerase chain reaction, immunoblotting, and NF-κB reporter assays. RESULTS: In tumor necrosis factor α-treated adipocytes, SCO mitigated ERK and NF-κB signaling as well as transcriptional responses but had no effect on fatty acid-binding protein 4 secretion. SCO also reduced levels of deleted in breast cancer 1 protein in adipocytes and inhibited inflammatory gene expression in stimulated macrophages. Finally, in pancreatic ß-cells, SCO decreased NF-κB-responsive promoter activity induced by IL-1ß treatment. CONCLUSIONS: SCO's ability to promote adipocyte development and function is thought to mediate its insulin-sensitizing actions in vivo. Our findings that SCO inhibits inflammatory responses through at least two distinct signaling pathways (ERK and NF-κB) in three cell types known to contribute to metabolic disease reveal that SCO may act more broadly than previously thought to improve metabolic health.


Assuntos
Adipócitos/metabolismo , Anti-Inflamatórios/uso terapêutico , Artemisia/química , Inflamação/tratamento farmacológico , Células Secretoras de Insulina/metabolismo , Macrófagos/metabolismo , Scoparia/química , Animais , Anti-Inflamatórios/farmacologia , Modelos Animais de Doenças , Humanos , Camundongos , Transfecção
4.
J Mol Endocrinol ; 61(4): 195-205, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30139876

RESUMO

STAT5A (signal transducer and activator of transcription 5A) is a transcription factor that plays a role in adipocyte development and function. In this study, we report DBC1 (deleted in breast cancer 1; also known as CCAR2) as a novel STAT5A-interacting protein. DBC1 has been primarily studied in tumor cells, but there is evidence that loss of this protein may promote metabolic health in mice. Currently, the functions of DBC1 in mature adipocytes are largely unknown. Using immunoprecipitation and immunoblotting techniques, we confirmed that there is an association between endogenous STAT5A and DBC1 proteins under physiological conditions in the adipocyte nucleus that is not dependent upon STAT5A tyrosine phosphorylation. We used siRNA to knockdown DBC1 in 3T3-L1 adipocytes to determine the impact on STAT5A activity, adipocyte gene expression, and TNFα (tumor necrosis factor α)-regulated lipolysis. The loss of DBC1 did not affect the expression of several STAT5A target genes including Socs3, Cish, Bcl6, Socs2, and Igf1 However, we did observe decreased levels of TNFα-induced glycerol and free fatty acids released from adipocytes with reduced DBC1 expression. In addition, DBC1-knockdown adipocytes had increased Glut4 expression. In summary, DBC1 can associate with STAT5A in adipocyte nucleus, but it does not appear to impact regulation of STAT5A target genes. Loss of adipocyte DBC1 modestly increases Glut4 gene expression and reduces TNFα-induced lipolysis. These observations are consistent with in vivo observations that show loss of DBC1 promotes metabolic health in mice.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Lipólise/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Células 3T3-L1 , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Diferenciação Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Imunoprecipitação , Camundongos , Fosforilação/efeitos dos fármacos , RNA Interferente Pequeno , Fator de Transcrição STAT5/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo
5.
Am J Physiol Endocrinol Metab ; 315(5): E1053-E1061, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30153067

RESUMO

An ethanolic extract of Artemisia scoparia (SCO) has metabolically favorable effects on adipocyte development and function in vitro and in vivo. In diet-induced obese mice, SCO supplementation significantly reduced fasting glucose and insulin levels. Given the importance of adipocyte lipolysis in metabolic health, we hypothesized that SCO modulates lipolysis in vitro and in vivo. Free fatty acids and glycerol were measured in the sera of mice fed a high-fat diet with or without SCO supplementation. In cultured 3T3-L1 adipocytes, the effects of SCO on lipolysis were assessed by measuring glycerol and free fatty acid release. Microarray analysis, qPCR, and immunoblotting were used to assess gene expression and protein abundance. We found that SCO supplementation of a high-fat diet in mice substantially reduces circulating glycerol and free fatty acid levels, and we observed a cell-autonomous effect of SCO to significantly attenuate tumor necrosis factor-α (TNFα)-induced lipolysis in cultured adipocytes. Although several prolipolytic and antilipolytic genes were identified by microarray analysis of subcutaneous and visceral adipose tissue from SCO-fed mice, regulation of these genes did not consistently correlate with SCO's ability to reduce lipolytic metabolites in sera or cell culture media. However, in the presence of TNFα in cultured adipocytes, SCO induced antilipolytic changes in phosphorylation of hormone-sensitive lipase and perilipin. Together, these data suggest that the antilipolytic effects of SCO on adipose tissue play a role in the ability of this botanical extract to improve whole body metabolic parameters and support its use as a dietary supplement to promote metabolic resiliency.


Assuntos
Adipócitos/efeitos dos fármacos , Artemisia , Lipólise/efeitos dos fármacos , Extratos Vegetais/farmacologia , Células 3T3-L1 , Adipócitos/metabolismo , Animais , Células Cultivadas , Ácidos Graxos não Esterificados/sangue , Glicerol/sangue , Camundongos , Perilipina-1/metabolismo , Fosforilação/efeitos dos fármacos , Esterol Esterase/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
6.
J Biol Chem ; 292(48): 19733-19742, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28982698

RESUMO

STAT5 proteins play a role in adipocyte development and function, but their specific functions are largely unknown. To this end, we used an unbiased MS-based approach to identify novel STAT5-interacting proteins. We observed that STAT5A bound the E1ß and E2 subunits of the pyruvate dehydrogenase complex (PDC). Whereas STAT5A typically localizes to the cytosol or nucleus, PDC normally resides within the mitochondrial matrix where it converts pyruvate to acetyl-CoA. We employed affinity purification and immunoblotting to validate the interaction between STAT5A and PDC subunits in murine and human cultured adipocytes, as well as in adipose tissue. We found that multiple PDC subunits interact with hormone-activated STAT5A in a dose- and time-dependent manner that coincides with tyrosine phosphorylation of STAT5. Using subcellular fractionation and immunofluorescence microscopy, we observed that PDC-E2 is present within the adipocyte nucleus where it associates with STAT5A. Because STAT5A is a transcription factor, we used chromatin immunoprecipitation (ChIP) to assess PDC's ability to interact with STAT5 DNA-binding sites. These analyses revealed that PDC-E2 is bound to a STAT5-binding site in the promoter of the STAT5 target gene cytokine-inducible SH2-containing protein (cish). We have demonstrated a compelling interaction between STAT5A and PDC subunits in adipocytes under physiological conditions. There is previous evidence that PDC localizes to cancer cell nuclei where it plays a role in histone acetylation. On the basis of our ChIP data and these previous findings, we hypothesize that PDC may modulate STAT5's ability to regulate gene expression by controlling histone or STAT5 acetylation.


Assuntos
Tecido Adiposo/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , Fator de Transcrição STAT5/metabolismo , Células 3T3-L1 , Tecido Adiposo/citologia , Animais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Ligação Proteica
7.
Mol Nutr Food Res ; 59(6): 1013-24, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25620073

RESUMO

SCOPE: Moringa oleifera (moringa) is tropical plant traditionally used as an antidiabetic food. It produces structurally unique and chemically stable moringa isothiocyanates (MICs) that were evaluated for their therapeutic use in vivo. METHODS AND RESULTS: C57BL/6L mice fed very high fat diet (VHFD) supplemented with 5% moringa concentrate (MC, delivering 66 mg/kg/d of MICs) accumulated fat mass, had improved glucose tolerance and insulin signaling, and did not develop fatty liver disease compared to VHFD-fed mice. MC-fed group also had reduced plasma insulin, leptin, resistin, cholesterol, IL-1ß, TNFα, and lower hepatic glucose-6-phosphatase (G6P) expression. In hepatoma cells, MC and MICs at low micromolar concentrations inhibited gluconeogenesis and G6P expression. MICs and MC effects on lipolysis in vitro and on thermogenic and lipolytic genes in adipose tissue in vivo argued these are not likely primary targets for the anti-obesity and anti-diabetic effects observed. CONCLUSION: Data suggest that MICs are the main anti-obesity and anti-diabetic bioactives of MC, and that they exert their effects by inhibiting rate-limiting steps in liver gluconeogenesis resulting in direct or indirect increase in insulin signaling and sensitivity. These conclusions suggest that MC may be an effective dietary food for the prevention and treatment of obesity and type 2 diabetes.


Assuntos
Fármacos Antiobesidade/farmacologia , Gluconeogênese/efeitos dos fármacos , Resistência à Insulina , Isotiocianatos/farmacologia , Moringa oleifera/química , Aumento de Peso/efeitos dos fármacos , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Composição Corporal , Colesterol/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Dieta Hiperlipídica , Fígado Gorduroso/prevenção & controle , Glucose-6-Fosfatase/sangue , Hipoglicemiantes/farmacologia , Insulina/sangue , Interleucina-1beta/sangue , Leptina/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/tratamento farmacológico , Extratos Vegetais/farmacologia , Resistina/sangue , Fator de Necrose Tumoral alfa/sangue
8.
PLoS One ; 9(6): e98897, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24915004

RESUMO

BACKGROUND: Failure of adipocytes to expand during periods of energy excess can result in undesirable metabolic consequences such as ectopic fat accumulation and insulin resistance. Blinded screening studies have indicated that Artemisia scoparia (SCO) extracts can enhance adipocyte differentiation and lipid accumulation in cultured adipocytes. The present study tested the hypothesis that SCO treatment modulates fat cell development and function in vitro and insulin sensitivity in adipose tissue in vivo. METHODS: In vitro experiments utilized a Gal4-PPARγ ligand binding domain (LBD) fusion protein-luciferase reporter assay to examine PPARγ activation. To investigate the ability of SCO to modulate adipogenesis and mature fat cell function in 3T3-L1 cells, neutral lipid accumulation, gene expression, and protein secretion were measured by Oil Red O staining, qRT-PCR, and immunoblotting, respectively. For the in vivo experiments, diet-induced obese (DIO) C57BL/6J mice were fed a high-fat diet (HFD) or HFD containing 1% w/w SCO for four weeks. Body weight and composition, food intake, and fasting glucose and insulin levels were measured. Phospho-activation and expression of insulin-sensitizing proteins in epididymal adipose tissue (eWAT) were measured by immunoblotting. RESULTS: Ethanolic extracts of A. scoparia significantly activated the PPARγ LBD and enhanced lipid accumulation in differentiating 3T3-L1 cells. SCO increased the transcription of several PPARγ target genes in differentiating 3T3-L1 cells and rescued the negative effects of tumor necrosis factor α on production and secretion of adiponectin and monocyte chemoattractant protein-1 in fully differentiated fat cells. DIO mice treated with SCO had elevated adiponectin levels and increased phosphorylation of AMPKα in eWAT when compared to control mice. In SCO-treated mice, these changes were also associated with decreased fasting insulin and glucose levels. CONCLUSION: SCO has metabolically beneficial effects on adipocytes in vitro and adipose tissue in vivo, highlighting its potential as a metabolically favorable botanical supplement.


Assuntos
Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adipogenia/efeitos dos fármacos , Artemisia/química , Sistema Endócrino/efeitos dos fármacos , Insulina/metabolismo , Extratos Vegetais/farmacologia , Células 3T3-L1 , Proteínas Quinases Ativadas por AMP/metabolismo , Adipogenia/genética , Adipocinas/metabolismo , Adiponectina/genética , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Glicemia , Composição Corporal/efeitos dos fármacos , Linhagem Celular , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Insulina/sangue , Masculino , Camundongos , PPAR gama/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA