Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2269, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480682

RESUMO

Primary familial brain calcification (PFBC) is characterized by calcium deposition in the brain, causing progressive movement disorders, psychiatric symptoms, and cognitive decline. PFBC is a heterogeneous disorder currently linked to variants in six different genes, but most patients remain genetically undiagnosed. Here, we identify biallelic NAA60 variants in ten individuals from seven families with autosomal recessive PFBC. The NAA60 variants lead to loss-of-function with lack of protein N-terminal (Nt)-acetylation activity. We show that the phosphate importer SLC20A2 is a substrate of NAA60 in vitro. In cells, loss of NAA60 caused reduced surface levels of SLC20A2 and a reduction in extracellular phosphate uptake. This study establishes NAA60 as a causal gene for PFBC, provides a possible biochemical explanation of its disease-causing mechanisms and underscores NAA60-mediated Nt-acetylation of transmembrane proteins as a fundamental process for healthy neurobiological functioning.


Assuntos
Encefalopatias , Humanos , Acetilação , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encefalopatias/genética , Padrões de Herança , Mutação , Fosfatos/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo
2.
Acta Neuropathol Commun ; 10(1): 20, 2022 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-35151370

RESUMO

Frontotemporal dementia (FTD) is a heterogeneous clinical disorder characterized by progressive abnormalities in behavior, executive functions, personality, language and/or motricity. A neuropathological subtype of FTD, frontotemporal lobar degeneration (FTLD)-FET, is characterized by protein aggregates consisting of the RNA-binding protein fused in sarcoma (FUS). The cause of FTLD-FET is not well understood and there is a lack of genetic evidence to aid in the investigation of mechanisms of the disease. The goal of this study was to identify genetic variants contributing to FTLD-FET and to investigate their effects on FUS pathology. We performed whole-exome sequencing on a 50-year-old FTLD patient with ubiquitin and FUS-positive neuronal inclusions and unaffected parents, and identified a de novo postzygotic nonsense variant in the NCDN gene encoding Neurochondrin (NCDN), NM_014284.3:c.1206G > A, p.(Trp402*). The variant was associated with a ~ 31% reduction in full-length protein levels in the patient's brain, suggesting that this mutation leads to NCDN haploinsufficiency. We examined the effects of NCDN haploinsufficiency on FUS and found that depleting primary cortical neurons of NCDN causes a reduction in the total number of FUS-positive cytoplasmic granules. Moreover, we found that these granules were significantly larger and more highly enriched with FUS. We then examined the effects of a loss of FUS function on NCDN in neurons and found that depleting cells of FUS leads to a decrease in NCDN protein and mRNA levels. Our study identifies the NCDN protein as a likely contributor of FTLD-FET pathophysiology. Moreover, we provide evidence for a negative feedback loop of toxicity between NCDN and FUS, where loss of NCDN alters FUS cytoplasmic dynamics, which in turn has an impact on NCDN expression.


Assuntos
Encéfalo/patologia , Demência Frontotemporal/genética , Proteínas do Tecido Nervoso/genética , Neurônios/patologia , Proteína FUS de Ligação a RNA/metabolismo , Códon sem Sentido , Feminino , Demência Frontotemporal/patologia , Haploinsuficiência , Humanos , Pessoa de Meia-Idade
3.
Mov Disord ; 35(8): 1336-1345, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32506582

RESUMO

OBJECTIVE: Primary familial brain calcification (PFBC) is a rare cerebral microvascular calcifying disorder with diverse neuropsychiatric expression. Five genes were reported as PFBC causative when carrying pathogenic variants. Haploinsufficiency of SLC20A2, which encodes an inorganic phosphate importer, is a major cause of autosomal-dominant PFBC. However, PFBC remains genetically unexplained in a proportion of patients, suggesting the existence of additional genes or cryptic mutations. We analyzed exome sequencing data of 71 unrelated, genetically unexplained PFBC patients with the aim to detect copy number variations that may disrupt the expression of core PFBC-causing genes. METHODS: After the identification of a deletion upstream of SLC20A2, we assessed its consequences on gene function by reverse transcriptase droplet digital polymerase chain reaction (RT-ddPCR), an ex vivo inorganic phosphate uptake assay, and introduced the deletion of a putative SLC20A2 enhancer mapping to this region in human embryonic kidney 293 (HEK293) cells by clustered regularly interspaced short palindromic repeats (CRISPR) - CRISPR-associated protein 9 (Cas9). RESULTS: The 8p11.21 deletion, segregating with PFBC in a family, mapped 35 kb upstream of SLC20A2. The deletion carriers/normal controls ratio of relative SLC20A2 mRNA levels was 60.2% (P < 0.001). This was comparable with that of patients carrying an SLC20A2 premature stop codon (63.4%; P < 0.001). The proband exhibited a 39.3% decrease of inorganic phosphate uptake in blood (P = 0.015). In HEK293 cells, we observed a 39.8% decrease in relative SLC20A2 mRNA levels after normalization on DNA copy number (P < 0.001). DISCUSSION: We identified a deletion of an enhancer of SLC20A2 expression, with carriers showing haploinsufficiency in similar ranges to loss-of-function alleles, and we observed reduced mRNA levels after deleting this element in a cellular model. We propose a 3-step strategy to identify and easily assess the effect of such events. © 2020 International Parkinson and Movement Disorder Society.


Assuntos
Encefalopatias , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III , Encéfalo/metabolismo , Variações do Número de Cópias de DNA , Células HEK293 , Haploinsuficiência/genética , Humanos , Mutação/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética
4.
Sci Rep ; 9(1): 6776, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31043717

RESUMO

Primary familial brain calcification (PFBC) is a rare neurological disease characterized by deposits of calcium phosphate in the basal ganglia and other regions of the brain. Pathogenic variants in the XPR1/SLC53A1 gene, which encodes the only known inorganic phosphate exporter, cause an autosomal dominant form of PFBC. These variants are typically located in the SPX N-terminal domain of the protein. Here, we characterize three XPR1 variants outside of SPX in three PFBC patients with an apparently sporadic presentation: c.1375C > T p.(R459C), c.1855A > G p.(N619D) and c.1886T > G p.(I629S), with the latter identified as the first XPR1/SLC53A1 de novo mutation to occur in a PFBC proband. When tested in an in vitro physiological complementation assay, the three XPR1 variants were impaired in phosphate export function, although they were normally expressed at the cell surface and could serve as functional receptors for retrovirus entry. Moreover, peripheral blood cells from the p.N619D patient could be assayed ex vivo and displayed significantly impaired phosphate export. Our results establish for the first time the clinical and molecular characteristics of XPR1 variants located outside the SPX domain and assert a direct link between these variants, deficient phosphate export, and PFBC. Moreover, we unveiled new structural features in XPR1 C-terminal domain that play a role in phosphate export and disease.


Assuntos
Encefalopatias/patologia , Calcinose/patologia , Mutação , Hormônios Peptídicos/genética , Fosfatos/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Virais/genética , Encefalopatias/genética , Calcinose/genética , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Linhagem , Domínios Proteicos , Receptor do Retrovírus Politrópico e Xenotrópico
5.
Brain ; 142(6): 1573-1586, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31009047

RESUMO

Primary familial brain calcification (PFBC) is a rare neurogenetic disorder with diverse neuropsychiatric expression. Mutations in four genes cause autosomal dominant PFBC: SLC20A2, XPR1, PDGFB and PDGFRB. Recently, biallelic mutations in the MYORG gene have been reported to cause PFBC with an autosomal recessive pattern of inheritance. We screened MYORG in 29 unrelated probands negatively screened for the autosomal dominant PFBC genes and identified 11 families with a biallelic rare or novel predicted damaging variant. We studied the clinical and radiological features of 16 patients of these 11 families and compared them to that of 102 autosomal dominant PFBC patients carrying a mutation in one of the four known autosomal dominant PFBC genes. We found that MYORG patients exhibited a high clinical penetrance with a median age of onset of 52 years (range: 21-62) with motor impairment at the forefront. In particular, dysarthria was the presenting sign in 11/16 patients. In contrast to patients with autosomal dominant PFBC, 12/15 (80%) symptomatic patients eventually presented at least four of the following five symptoms: dysarthria, cerebellar syndrome, gait disorder of any origin, akinetic-hypertonic syndrome and pyramidal signs. In addition to the most severe clinical pattern, MYORG patients exhibited the most severe pattern of calcifications as compared to the patients from the four autosomal dominant PFBC gene categories. Strikingly, 12/15 presented with brainstem calcifications in addition to extensive calcifications in other brain areas (lenticular nuclei, thalamus, cerebellar hemispheres, vermis, ±cortex). Among them, eight patients exhibited pontine calcifications, which were observed in none of the autosomal dominant PFBC patients and hence appeared to be highly specific. Finally, all patients exhibited cerebellar atrophy with diverse degrees of severity on CT scans. We confirmed the existence of cerebellar atrophy by performing MRI voxel-based morphometry analyses of MYORG patients with autosomal dominant PFBC mutation carriers as a comparison group. Of note, in three families, the father carried small pallido-dentate calcifications while carrying the mutation at the heterozygous state, suggesting a putative phenotypic expression in some heterozygous carriers. In conclusion, we confirm that MYORG is a novel major PFBC causative gene and that the phenotype associated with such mutations may be recognized based on pedigree, clinical and radiological features.


Assuntos
Encefalopatias/genética , Encéfalo/patologia , Glicosídeo Hidrolases/genética , Malformações do Sistema Nervoso/genética , Adulto , Encéfalo/metabolismo , Calcinose/genética , Feminino , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Linhagem , Fenótipo , Receptor do Retrovírus Politrópico e Xenotrópico , Adulto Jovem
6.
Eur J Hum Genet ; 26(10): 1462-1477, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29955172

RESUMO

Primary familial brain calcification (PFBC) is a rare cerebral microvascular calcifying disorder with a wide spectrum of motor, cognitive, and neuropsychiatric symptoms. It is typically inherited as an autosomal-dominant trait with four causative genes identified so far: SLC20A2, PDGFRB, PDGFB, and XPR1. Our study aimed at screening the coding regions of these genes in a series of 177 unrelated probands that fulfilled the diagnostic criteria for primary brain calcification regardless of their family history. Sequence variants were classified as pathogenic, likely pathogenic, or of uncertain significance (VUS), based on the ACMG-AMP recommendations. We identified 45 probands (25.4%) carrying either pathogenic or likely pathogenic variants (n = 34, 19.2%) or VUS (n = 11, 6.2%). SLC20A2 provided the highest contribution (16.9%), followed by XPR1 and PDGFB (3.4% each), and PDGFRB (1.7%). A total of 81.5% of carriers were symptomatic and the most recurrent symptoms were parkinsonism, cognitive impairment, and psychiatric disturbances (52.3%, 40.9%, and 38.6% of symptomatic individuals, respectively), with a wide range of age at onset (from childhood to 81 years). While the pathogenic and likely pathogenic variants identified in this study can be used for genetic counseling, the VUS will require additional evidence, such as recurrence in unrelated patients, in order to be classified as pathogenic.


Assuntos
Encefalopatias/genética , Calcinose/genética , Disfunção Cognitiva/genética , Variação Genética/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Encefalopatias/fisiopatologia , Calcinose/fisiopatologia , Criança , Disfunção Cognitiva/fisiopatologia , Feminino , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Linhagem , Fenótipo , Proteínas Proto-Oncogênicas c-sis/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Receptores Virais/efeitos dos fármacos , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Receptor do Retrovírus Politrópico e Xenotrópico , Adulto Jovem
7.
Eur J Hum Genet ; 24(11): 1630-1634, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27245298

RESUMO

Primary brain calcification (PBC) is a dominantly inherited calcifying disorder of the brain. SLC20A2 loss-of-function variants account for the majority of families. Only one genomic deletion encompassing SLC20A2 and six other genes has been reported. We performed whole-exome sequencing (WES) in 24 unrelated French patients with PBC, negatively screened for sequence variant in the known genes SLC20A2, PDGFB, PDGFRB and XPR1. We used the CANOES tool to detect copy number variations (CNVs). We detected two deletions of exon 2 of SLC20A2 in two unrelated patients, which segregated with PBC in one family. We then reanalyzed the same series using a QMPSF assay including one amplicon in each exon of SLC20A2 and detected two supplemental partial deletions in two patients: one deletion of exon 4 and one deletion of exons 4 and 5. These deletions were missed by the first screening step of CANOES but could finally be detected after readjustment of bioinformatic parameters and use of a genotyping step of CANOES. This study reports the first partial deletions of SLC20A2 and strengthens its position as the major PBC-causative gene. It is possible to detect short CNVs from WES data, although the sensitivity of such tools should be evaluated in comparison with other methods.


Assuntos
Encefalopatias/genética , Calcinose/genética , Exoma , Deleção de Genes , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Idoso , Algoritmos , Encefalopatias/diagnóstico , Calcinose/diagnóstico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Sequência de DNA/métodos , Síndrome , Receptor do Retrovírus Politrópico e Xenotrópico
8.
J Neurol ; 263(8): 1559-64, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27230854

RESUMO

Mutations in XPR1, a gene encoding an inorganic phosphate exporter, have recently been identified in patients with primary familial brain calcification (PFBC). Using Sanger sequencing, we screened XPR1 in 18 unrelated patients with PFBC and no SLC20A2, PDGFB, or PDGFRB mutation. XPR1 variants were tested in an in vitro physiological complementation assay and patient blood cells were assessed ex vivo for phosphate export. We identified a novel c.260T > C, p.(Leu87Pro) XPR1 variant in a 41-year-old man complaining of micrographia and dysarthria and demonstrating mild parkinsonism, cerebellar ataxia and executive dysfunction. Brain (123)I-Ioflupane scintigraphy showed marked dopaminergic neuron loss. Peripheral blood cells from the patient exhibited decreased phosphate export. XPR1 in which we introduced the mutation was not detectable at the cell surface and did not lead to phosphate export. These results confirm that loss of XPR1-mediated phosphate export function causes PFBC, occurring in less than 8 % of cases negative for the other genes, and may be responsible for parkinsonism.


Assuntos
Encefalopatias/genética , Calcinose/genética , Saúde da Família , Mutação/genética , Receptores Acoplados a Proteínas G/genética , Receptores Virais/genética , Adulto , Encefalopatias/diagnóstico por imagem , Calcinose/diagnóstico por imagem , Feminino , Estudos de Associação Genética , Humanos , Imageamento por Ressonância Magnética , Masculino , Nortropanos/farmacocinética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Cintilografia , Transfecção , Receptor do Retrovírus Politrópico e Xenotrópico
9.
Am J Med Genet B Neuropsychiatr Genet ; 168(7): 586-94, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26129893

RESUMO

Primary Familial Brain Calcification (PFBC) is a dominantly inherited cerebral microvascular calcifying disorder with diverse neuropsychiatric expression. Three causative genes have been identified: SLC20A2, PDGFRB and, recently, PDGFB, whose associated phenotype has not yet been extensively studied. We included in the largest published case series of genetically confirmed PFBC, 19 PDGFB (including three new mutations), 24 SLC20A2 (including 4 new mutations), and 14 PDGFRB mutation carriers, from two countries (France and Brazil). We studied clinical features and applied our visual rating scale on all 49 available CT scans. Among the symptomatic mutation carriers (33/57, 58%), the three most frequently observed categories of clinical features were psychiatric signs (72.7%, 76.5%, and 80% for PDGFB, SLC20A2, and PDGFRB, respectively), movement disorders (45.5%, 76.5%, and 40%), and cognitive impairment (54.6%, 64.7%, and 40%). The median age of clinical onset was 31 years, 25% had an early onset (before 18) and 25% a later onset (after 53). Patients with an early clinical onset exhibited mostly isolated psychiatric or cognitive signs, while patients with a later onset exhibited mostly movement disorders, especially in association with other clinical features. CT scans rating allowed identifying four patterns of calcification. The total calcification score was best predicted by the combined effects of gene (SLC20A2 > PDGFB > PDGFRB mutations), sex (male), and (increasing) age, defining three risk classes, which correlated with the four patterns of calcification. These calcification patterns could reflect the natural history of the calcifying process, with distinct risk classes characterized by different age at onset or rate of progression.


Assuntos
Encefalopatias Metabólicas Congênitas/genética , Calcinose/genética , Proteínas Proto-Oncogênicas c-sis/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Adulto , Encefalopatias Metabólicas Congênitas/metabolismo , Encefalopatias Metabólicas Congênitas/patologia , Calcificação Fisiológica/genética , Calcinose/metabolismo , Calcinose/patologia , Feminino , Estudos de Associação Genética , Humanos , Masculino , Proteínas Proto-Oncogênicas c-sis/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Fatores Sexuais , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo
10.
Nat Genet ; 47(6): 579-81, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25938945

RESUMO

Primary familial brain calcification (PFBC) is a neurological disease characterized by calcium phosphate deposits in the basal ganglia and other brain regions and has thus far been associated with SLC20A2, PDGFB or PDGFRB mutations. We identified in multiple families with PFBC mutations in XPR1, a gene encoding a retroviral receptor with phosphate export function. These mutations alter phosphate export, implicating XPR1 and phosphate homeostasis in PFBC.


Assuntos
Encefalopatias Metabólicas Congênitas/genética , Calcinose/genética , Receptores Acoplados a Proteínas G/genética , Receptores Virais/genética , Análise Mutacional de DNA , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Células HEK293 , Humanos , Escore Lod , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Doenças Neurodegenerativas/genética , Linhagem , Receptor do Retrovírus Politrópico e Xenotrópico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA