Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Health Perspect ; 132(3): 37007, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38534131

RESUMO

BACKGROUND: Chronic arsenic exposure has been associated with an increased risk of cardiovascular disease; diabetes; cancers of the lung, pancreas and prostate; and all-cause mortality in American Indian communities in the Strong Heart Study. OBJECTIVE: The Strong Heart Water Study (SHWS) designed and evaluated a multilevel, community-led arsenic mitigation program to reduce arsenic exposure among private well users in partnership with Northern Great Plains American Indian Nations. METHODS: A cluster randomized controlled trial (cRCT) was conducted to evaluate the effectiveness of the SHWS arsenic mitigation program over a 2-y period on a) urinary arsenic, and b) reported use of arsenic-safe water for drinking and cooking. The cRCT compared the installation of a point-of-use arsenic filter and a mobile Health (mHealth) program (3 phone calls; SHWS mHealth and Filter arm) to a more intensive program, which included this same program plus three home visits (3 phone calls and 3 home visits; SHWS Intensive arm). RESULTS: A 47% reduction in urinary arsenic [geometric mean (GM)=13.2 to 7.0µg/g creatinine] was observed from baseline to the final follow-up when both study arms were combined. By treatment arm, the reduction in urinary arsenic from baseline to the final follow-up visit was 55% in the mHealth and Filter arm (GM=14.6 to 6.55µg/g creatinine) and 30% in the Intensive arm (GM=11.2 to 7.82µg/g creatinine). There was no significant difference in urinary arsenic levels by treatment arm at the final follow-up visit comparing the Intensive vs. mHealth and Filter arms: GM ratio of 1.21 (95% confidence interval: 0.77, 1.90). In both arms combined, exclusive use of arsenic-safe water from baseline to the final follow-up visit significantly increased for water used for cooking (17% to 53%) and drinking (12% to 46%). DISCUSSION: Delivery of the interventions for the community-led SHWS arsenic mitigation program, including the installation of a point-of-use arsenic filter and a mHealth program on the use of arsenic-safe water (calls only, no home visits), resulted in a significant reduction in urinary arsenic and increases in reported use of arsenic-safe water for drinking and cooking during the 2-y study period. These results demonstrate that the installation of an arsenic filter and phone calls from a mHealth program presents a promising approach to reduce water arsenic exposure among private well users. https://doi.org/10.1289/EHP12548.


Assuntos
Arsênio , Água Potável , Humanos , Indígena Americano ou Nativo do Alasca , Arsênio/urina , Creatinina , Água Potável/química , Telemedicina
2.
Artigo em Inglês | MEDLINE | ID: mdl-36768048

RESUMO

Arsenic is a naturally occurring toxicant in groundwater, which increases cancer and cardiovascular disease risk. American Indian populations are disproportionately exposed to arsenic in drinking water. The Strong Heart Water Study (SHWS), through a community-centered approach for intervention development and implementation, delivered an arsenic mitigation program for private well users in American Indian communities. The SHWS program comprised community-led water arsenic testing, point-of-use arsenic filter installation, and a mobile health program to promote sustained filter use and maintenance (i.e., changing the filter cartridge). Half of enrolled households received additional in-person behavior change communication and videos. Our objectives for this study were to assess successes, barriers, and facilitators in the implementation, use, and maintenance of the program among implementers and recipients. We conducted 45 semi-structured interviews with implementers and SHWS program recipients. We analyzed barriers and facilitators using the Consolidated Framework for Implementation Research and the Risks, Attitudes, Norms, Abilities, and Self-regulation model. At the implementer level, facilitators included building rapport and trust between implementers and participating households. Barriers included the remoteness of households, coordinating with community plumbers for arsenic filter installation, and difficulty securing a local supplier for replacement filter cartridges. At the recipient level, facilitators included knowledge of the arsenic health risks, perceived effectiveness of the filter, and visual cues to promote habit formation. Barriers included attitudes towards water taste and temperature and inability to procure or install replacement filter cartridges. This study offers insights into the successes and challenges of implementing an arsenic mitigation program tailored to American Indian households, which can inform future programs in partnership with these and potentially similar affected communities. Our study suggests that building credibility and trust between implementers and participants is important for the success of arsenic mitigation programs.


Assuntos
Arsênio , Água Potável , Poluentes Químicos da Água , Humanos , Poços de Água , Arsênio/análise , Indígena Americano ou Nativo do Alasca , Poluentes Químicos da Água/análise , Pesquisa Qualitativa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA