Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Expert Opin Drug Discov ; 17(8): 839-848, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35733389

RESUMO

INTRODUCTION: Adrenomedullin (AM) is a peptide responsible for many physiological processes including vascular health and hormone regulation. Dysregulation of AM signaling can stimulate cancers by promoting proliferation, angiogenesis and metastasis. Two AM receptors contribute to tumor progression in different ways. Adrenomedullin-1 receptor (AM1R) regulates blood pressure and blocking AM signaling via AM1R would be clinically unacceptable. Therefore, antagonizing adrenomedullin-2 receptor (AM2R) presents as an avenue for anti-cancer drug development. AREAS COVERED: We review the literature to highlight AM's role in cancer as well as delineating the specific roles AM1R and AM2R mediate in the development of a pro-tumoral microenvironment. We highlight the importance of exploring the residue differences between the receptors that led to the development of first-in-class selective AM2R small molecule antagonists. We also summarize the current approaches targeting AM and its receptors, their anti-tumor effects and their limitations. EXPERT OPINION: As tool compounds, AM2R antagonists will allow the dissection of the functions of CGRPR (calcitonin gene-related peptide receptor), AM1R and AM2R, and has considerable potential as a first-in-class oncology therapy. Furthermore, the lack of detectable side effects and good drug-like pharmacokinetic properties of these AM2R antagonists support the promise of this class of compounds as potential anti-cancer therapeutics.


Assuntos
Antineoplásicos , Neoplasias , Adrenomedulina , Antineoplásicos/farmacologia , Proteína Semelhante a Receptor de Calcitonina/química , Humanos , Neoplasias/tratamento farmacológico , Proteína 2 Modificadora da Atividade de Receptores/química , Proteína 3 Modificadora da Atividade de Receptores/química , Receptores de Adrenomedulina/química , Microambiente Tumoral
2.
J Med Chem ; 64(6): 3299-3319, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33666424

RESUMO

Class B G-protein-coupled receptors (GPCRs) remain an underexploited target for drug development. The calcitonin receptor (CTR) family is particularly challenging, as its receptors are heteromers comprising two distinct components: the calcitonin receptor-like receptor (CLR) or calcitonin receptor (CTR) together with one of three accessory proteins known as receptor activity-modifying proteins (RAMPs). CLR/RAMP1 forms a CGRP receptor, CLR/RAMP2 forms an adrenomedullin-1 (AM1) receptor, and CLR/RAMP3 forms an adrenomedullin-2 (AM2) receptor. The CTR/RAMP complexes form three distinct amylin receptors. While the selective blockade of AM2 receptors would be therapeutically valuable, inhibition of AM1 receptors would cause clinically unacceptable increased blood pressure. We report here a systematic study of structure-activity relationships that has led to the development of first-in-class AM2 receptor antagonists. These compounds exhibit therapeutically valuable properties with 1000-fold selectivity over the AM1 receptor. These results highlight the therapeutic potential of AM2 antagonists.


Assuntos
Receptores de Adrenomedulina/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Descoberta de Drogas , Feminino , Humanos , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Receptores de Adrenomedulina/metabolismo , Bibliotecas de Moléculas Pequenas/uso terapêutico , Relação Estrutura-Atividade , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo
3.
ACS Pharmacol Transl Sci ; 3(4): 706-719, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32832872

RESUMO

The hormone adrenomedullin has both physiological and pathological roles in biology. As a potent vasodilator, adrenomedullin is critically important in the regulation of blood pressure, but it also has several roles in disease, of which its actions in cancer are becoming recognized to have clinical importance. Reduced circulating adrenomedullin causes increased blood pressure but also reduces tumor progression, so drugs blocking all effects of adrenomedullin would be unacceptable clinically. However, there are two distinct receptors for adrenomedullin, each comprising the same G protein-coupled receptor (GPCR), the calcitonin receptor-like receptor (CLR), together with a different accessory protein known as a receptor activity-modifying protein (RAMP). The CLR with RAMP2 forms an adrenomedullin-1 receptor, and the CLR with RAMP3 forms an adrenomedullin-2 receptor. Recent research suggests that a selective blockade of adrenomedullin-2 receptors would be therapeutically valuable. Here we describe the design, synthesis, and characterization of potent small-molecule adrenomedullin-2 receptor antagonists with 1000-fold selectivity over the adrenomedullin-1 receptor, although retaining activity against the CGRP receptor. These molecules have clear effects on markers of pancreatic cancer progression in vitro, drug-like pharmacokinetic properties, and inhibit xenograft tumor growth and extend life in a mouse model of pancreatic cancer. Taken together, our data support the promise of a new class of anticancer therapeutics as well as improved understanding of the pharmacology of the adrenomedullin receptors and other GPCR/RAMP heteromers.

4.
PLoS One ; 9(1): e85237, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24454825

RESUMO

The Calcium Sensing Receptor (CaSR) plays a role in calcium homeostasis by sensing minute changes in serum Ca(2+) and modulating secretion of calciotropic hormones. It has been shown in transfected cells that accessory proteins known as Receptor Activity Modifying Proteins (RAMPs), specifically RAMPs 1 and 3, are required for cell-surface trafficking of the CaSR. These effects have only been demonstrated in transfected cells, so their physiological relevance is unclear. Here we explored CaSR/RAMP interactions in detail, and showed that in thyroid human carcinoma cells, RAMP1 is required for trafficking of the CaSR. Furthermore, we show that normal RAMP1 function is required for intracellular responses to ligands. Specifically, to confirm earlier studies with tagged constructs, and to provide the additional benefit of quantitative stoichiometric analysis, we used fluorescence resonance energy transfer to show equal abilities of RAMP1 and 3 to chaperone CaSR to the cell surface, though RAMP3 interacted more efficiently with the receptor. Furthermore, a higher fraction of RAMP3 than RAMP1 was observed in CaSR-complexes on the cell-surface, suggesting different ratios of RAMPs to CaSR. In order to determine relevance of these findings in an endogenous expression system we assessed the effect of RAMP1 siRNA knock-down in medullary thyroid carcinoma TT cells, (which express RAMP1, but not RAMP3 constitutively) and measured a significant 50% attenuation of signalling in response to CaSR ligands Cinacalcet and neomycin. Blockade of RAMP1 using specific antibodies induced a concentration-dependent reduction in CaSR-mediated signalling in response to Cinacalcet in TT cells, suggesting a novel functional role for RAMP1 in regulation of CaSR signalling in addition to its known role in receptor trafficking. These data provide evidence that RAMPs traffic the CaSR as higher-level oligomers and play a role in CaSR signalling even after cell surface localisation has occurred.


Assuntos
Proteína 1 Modificadora da Atividade de Receptores/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Neoplasias da Glândula Tireoide/metabolismo , Animais , Células COS , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Chlorocebus aethiops , Transferência Ressonante de Energia de Fluorescência , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína 1 Modificadora da Atividade de Receptores/genética , Transdução de Sinais , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia
5.
Proc Natl Acad Sci U S A ; 107(29): 12913-8, 2010 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-20616007

RESUMO

The neighbor of Brca1 gene (Nbr1) functions as an autophagy receptor involved in targeting ubiquitinated proteins for degradation. It also has a dual role as a scaffold protein to regulate growth-factor receptor and downstream signaling pathways. We show that genetic truncation of murine Nbr1 leads to an age-dependent increase in bone mass and bone mineral density through increased osteoblast differentiation and activity. At 6 mo of age, despite normal body size, homozygous mutant animals (Nbr1(tr/tr)) have approximately 50% more bone than littermate controls. Truncated Nbr1 (trNbr1) co-localizes with p62, a structurally similar interacting scaffold protein, and the autophagosome marker LC3 in osteoblasts, but unlike the full-length protein, trNbr1 fails to complex with activated p38 MAPK. Nbr1(tr/tr) osteoblasts and osteoclasts show increased activation of p38 MAPK, and significantly, pharmacological inhibition of the p38 MAPK pathway in vitro abrogates the increased osteoblast differentiation of Nbr1(tr/tr) cells. Nbr1 truncation also leads to increased p62 protein expression. We show a role for Nbr1 in bone remodeling, where loss of function leads to perturbation of p62 levels and hyperactivation of p38 MAPK that favors osteoblastogenesis.


Assuntos
Osteoblastos/enzimologia , Osteogênese , Proteínas/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Animais Recém-Nascidos , Densidade Óssea , Células COS , Diferenciação Celular , Chlorocebus aethiops , Vesículas Citoplasmáticas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Mutantes , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Mutantes/metabolismo , Tamanho do Órgão , Osteoblastos/citologia , Estabilidade Proteica , Transporte Proteico , Proteínas/metabolismo , Frações Subcelulares/metabolismo , Fator de Transcrição TFIIH , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA