Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 5049, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34413304

RESUMO

Preclinical testing is a crucial step in evaluating cancer therapeutics. We aimed to establish a significant resource of patient-derived xenografts (PDXs) of prostate cancer for rapid and systematic evaluation of candidate therapies. The PDX collection comprises 59 tumors collected from 30 patients between 2012-2020, coinciding with availability of abiraterone and enzalutamide. The PDXs represent the clinico-pathological and genomic spectrum of prostate cancer, from treatment-naïve primary tumors to castration-resistant metastases. Inter- and intra-tumor heterogeneity in adenocarcinoma and neuroendocrine phenotypes is evident from bulk and single-cell RNA sequencing data. Organoids can be cultured from PDXs, providing further capabilities for preclinical studies. Using a 1 x 1 x 1 design, we rapidly identify tumors with exceptional responses to combination treatments. To govern the distribution of PDXs, we formed the Melbourne Urological Research Alliance (MURAL). This PDX collection is a substantial resource, expanding the capacity to test and prioritize effective treatments for prospective clinical trials in prostate cancer.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Organoides/patologia , Neoplasias da Próstata/patologia , Animais , Modelos Animais de Doenças , Genoma , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mutação , Metástase Neoplásica , Organoides/metabolismo , Estudos Prospectivos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Bancos de Tecidos , Transcriptoma , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Cancers (Basel) ; 13(6)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799802

RESUMO

Mast cells (MCs) are important cellular components of the tumor microenvironment and are significantly associated with poor patient outcomes in prostate cancer and other solid cancers. The promotion of tumor progression partly involves heterotypic interactions between MCs and cancer-associated fibroblasts (CAFs), which combine to potentiate a pro-tumor extracellular matrix and promote epithelial cell invasion and migration. Thus far, the interactions between MCs and CAFs remain poorly understood. To identify molecular changes that may alter resident MC function in the prostate tumor microenvironment, we profiled the transcriptome of human prostate MCs isolated from patient-matched non-tumor and tumor-associated regions of fresh radical prostatectomy tissue. Transcriptomic profiling revealed a distinct gene expression profile of MCs isolated from prostate tumor regions, including the downregulation of SAMD14, a putative tumor suppressor gene. Proteomic profiling revealed that overexpression of SAMD14 in HMC-1 altered the secretion of proteins associated with immune regulation and extracellular matrix processes. To assess MC biological function within a model of the prostate tumor microenvironment, HMC-1-SAMD14+ conditioned media was added to co-cultures of primary prostatic CAFs and prostate epithelium. HMC-1-SAMD14+ secretions were shown to reduce the deposition and alignment of matrix produced by CAFs and suppress pro-tumorigenic prostate epithelial morphology. Overall, our data present the first profile of human MCs derived from prostate cancer patient specimens and identifies MC-derived SAMD14 as an important mediator of MC phenotype and function within the prostate tumor microenvironment.

3.
Clin Epigenetics ; 12(1): 48, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32188493

RESUMO

BACKGROUND: Prostate cancer changes the phenotype of cells within the stromal microenvironment, including fibroblasts, which in turn promote tumour progression. Functional changes in prostate cancer-associated fibroblasts (CAFs) coincide with alterations in DNA methylation levels at loci-specific regulatory regions. Yet, it is not clear how these methylation changes compare across CAFs from different patients. Therefore, we examined the consistency and prognostic significance of genome-wide DNA methylation profiles between CAFs from patients with different grades of primary prostate cancer. RESULTS: We used Infinium MethylationEPIC BeadChips to evaluate genome-wide DNA methylation profiles from 18 matched CAFs and non-malignant prostate tissue fibroblasts (NPFs) from men with moderate to high grade prostate cancer, as well as five unmatched benign prostate tissue fibroblasts (BPFs) from men with benign prostatic hyperplasia. We identified two sets of differentially methylated regions (DMRs) in patient CAFs. One set of DMRs reproducibly differed between CAFs and fibroblasts from non-malignant tissue (NPFs and BPFs). Indeed, more than 1200 DMRs consistently changed in CAFs from every patient, regardless of tumour grade. The second set of DMRs varied between CAFs according to the severity of the tumour. Notably, hypomethylation of the EDARADD promoter occurred specifically in CAFs from high-grade tumours and correlated with increased transcript abundance and increased EDARADD staining in patient tissue. Across multiple cohorts, tumours with low EDARADD DNA methylation and high EDARADD mRNA expression were consistently associated with adverse clinical features and shorter recurrence free survival. CONCLUSIONS: We identified a large set of DMRs that are commonly shared across CAFs regardless of tumour grade and outcome, demonstrating highly consistent epigenome changes in the prostate tumour microenvironment. Additionally, we found that CAFs from aggressive prostate cancers have discrete methylation differences compared to CAFs from moderate risk prostate cancer. Together, our data demonstrates that the methylome of the tumour microenvironment reflects both the presence and the severity of the prostate cancer and, therefore, may provide diagnostic and prognostic potential.


Assuntos
Fibroblastos Associados a Câncer/patologia , Metilação de DNA , Proteína de Domínio de Morte Associada a Edar/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Hiperplasia Prostática/patologia , Neoplasias da Próstata/patologia , Idoso , Fibroblastos Associados a Câncer/química , Estudos de Casos e Controles , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Prognóstico , Regiões Promotoras Genéticas , Hiperplasia Prostática/genética , Neoplasias da Próstata/genética , Análise de Sobrevida , Células Tumorais Cultivadas , Microambiente Tumoral , Regulação para Cima
4.
Genome Res ; 28(5): 625-638, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29650553

RESUMO

The growth and progression of solid tumors involves dynamic cross-talk between cancer epithelium and the surrounding microenvironment. To date, molecular profiling has largely been restricted to the epithelial component of tumors; therefore, features underpinning the persistent protumorigenic phenotype of the tumor microenvironment are unknown. Using whole-genome bisulfite sequencing, we show for the first time that cancer-associated fibroblasts (CAFs) from localized prostate cancer display remarkably distinct and enduring genome-wide changes in DNA methylation, significantly at enhancers and promoters, compared to nonmalignant prostate fibroblasts (NPFs). Differentially methylated regions associated with changes in gene expression have cancer-related functions and accurately distinguish CAFs from NPFs. Remarkably, a subset of changes is shared with prostate cancer epithelial cells, revealing the new concept of tumor-specific epigenome modifications in the tumor and its microenvironment. The distinct methylome of CAFs provides a novel epigenetic hallmark of the cancer microenvironment and promises new biomarkers to improve interpretation of diagnostic samples.


Assuntos
Metilação de DNA , Epigenômica/métodos , Neoplasias da Próstata/genética , Microambiente Tumoral/genética , Fibroblastos Associados a Câncer/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genoma Humano/genética , Humanos , Masculino , Regiões Promotoras Genéticas/genética , Neoplasias da Próstata/patologia , Sequenciamento Completo do Genoma/métodos
5.
Nat Protoc ; 8(5): 836-48, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23558784

RESUMO

Most cases of prostate cancer are now diagnosed as moderate-grade localized disease. These tumor specimens are important tools in the discovery and translation of prostate cancer research; however, unlike more advanced tumors, they are notoriously difficult to grow in the laboratory. We developed a system for efficiently xenografting localized human prostate cancer tissue, and we adapted this protocol to study the interactions between the specific subsets of epithelial and stromal cells. Fresh prostate tissues or isolated epithelial cells are recombined with mouse seminal vesicle mesenchyme (SVM) and grafted under the renal capsule of immunodeficient mice for optimum growth and survival. Alternatively, mouse mesenchyme can be replaced with human prostate fibroblasts in order to determine their contribution to tumor progression. Grafts can be grown for several months to determine the effectiveness of novel therapeutic compounds when administered to host mice, thereby paving the way for personalizing the treatment of individual prostate cancers.


Assuntos
Neoplasias da Próstata/patologia , Transplante Heterólogo/métodos , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Técnicas de Cultura de Células , Separação Celular/métodos , Técnicas de Cocultura , Avaliação Pré-Clínica de Medicamentos , Humanos , Rim/cirurgia , Masculino , Camundongos , Camundongos SCID , Glândulas Seminais/patologia
6.
Methods Mol Biol ; 945: 365-82, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23097118

RESUMO

Basic and translational (or preclinical) prostate cancer research has traditionally been conducted with a limited repertoire of immortalized cell lines, which have homogeneous phenotypes and have adapted to long-term tissue culture. Primary cell culture provides a model system that allows a broader spectrum of cell types from a greater number of patients to be studied, in the absence of artificially induced genetic mutations. Nevertheless, primary prostate epithelial cell culture can be technically challenging, even for laboratories experienced in immortalized cell culture. Therefore, we provide methods to isolate and culture primary epithelial cells directly from human prostate tissue. Initially, we describe the isolation of bulk epithelial cells from benign or tumor tissues. These cells have a predominantly basal/intermediate phenotype and co-express cytokeratin 8/18 and high molecular weight cytokeratins. Since prostatic stem cells play a major role in disease progression and are considered to be a therapeutic target, we also describe a prospective approach to specifically isolate prostatic basal cells that include both stem and transit-amplifying basal populations, which can be studied independently or subsequently differentiated to supply luminal cells. This approach allows the study of stem cells for the development of new therapeutics for prostate cancer.


Assuntos
Técnicas de Cultura de Células/métodos , Células Epiteliais/citologia , Próstata/citologia , Animais , Antígenos de Superfície/metabolismo , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Criopreservação , Dissecação , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Células Alimentadoras/citologia , Citometria de Fluxo , Genótipo , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Mitomicina/farmacologia , Fenótipo , Próstata/patologia , Próstata/cirurgia , Neoplasias da Próstata/patologia
7.
Antiviral Res ; 92(3): 461-9, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22020161

RESUMO

Type I interferons (IFNs) are potent mediators of the innate immune response to viral infection. IFNs released from infected cells bind to a receptor (IFNAR) on neighboring cells, triggering signaling cascades that limit further infection. Subtle variations in amino acids can alter IFNAR binding and signaling outcomes. We used a new gene crossbreeding method to generate hybrid, type I human IFNs with enhanced antiviral activity against four dissimilar, highly pathogenic viruses. Approximately 1400 novel IFN genes were expressed in plants, and the resultant IFN proteins were screened for antiviral activity. Comparing the gene sequences of a final set of 12 potent IFNs to those of parent genes revealed strong selection pressures at numerous amino acids. Using three-dimensional models based on a recently solved experimental structure of IFN bound to IFNAR, we show that many but not all of the amino acids that were highly selected for are predicted to improve receptor binding.


Assuntos
Antivirais/farmacologia , Interferon Tipo I/farmacologia , Vírus/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Chlorocebus aethiops , Humanos , Interferon Tipo I/química , Interferon Tipo I/genética , Testes de Sensibilidade Microbiana , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Alinhamento de Sequência , Nicotiana/genética , Células Vero
8.
Clin Vaccine Immunol ; 18(5): 707-16, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21450977

RESUMO

We evaluated the immunogenicity and protective efficacy of a DNA vaccine expressing codon-optimized envelope glycoprotein genes of Venezuelan equine encephalitis virus (VEEV) when delivered by intramuscular electroporation. Mice vaccinated with the DNA vaccine developed robust VEEV-neutralizing antibody responses that were comparable to those observed after administration of the live-attenuated VEEV vaccine TC-83 and were completely protected from a lethal aerosol VEEV challenge. The DNA vaccine also elicited strong neutralizing antibody responses in rabbits that persisted at high levels for at least 6 months and could be boosted by a single additional electroporation administration of the DNA performed approximately 6 months after the initial vaccinations. Cynomolgus macaques that received the vaccine by intramuscular electroporation developed substantial neutralizing antibody responses and after an aerosol challenge had no detectable serum viremia and had reduced febrile reactions, lymphopenia, and clinical signs of disease compared to those of negative-control macaques. Taken together, our results demonstrate that this DNA vaccine provides a potent means of protecting against VEEV infections and represents an attractive candidate for further development.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vírus da Encefalite Equina Venezuelana/imunologia , Encefalomielite Equina Venezuelana/prevenção & controle , Vacinas de DNA/imunologia , Vacinas Virais/imunologia , Animais , Modelos Animais de Doenças , Eletroporação , Vírus da Encefalite Equina Venezuelana/genética , Encefalomielite Equina Venezuelana/patologia , Feminino , Febre/prevenção & controle , Glicoproteínas/genética , Glicoproteínas/imunologia , Linfopenia/prevenção & controle , Macaca , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Coelhos , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Fatores de Tempo , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/genética , Viremia/prevenção & controle
9.
Vaccine ; 28(46): 7345-50, 2010 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-20851089

RESUMO

A study to evaluate the immunogenicity and protective efficacy of a Venezuelan equine encephalitis virus (VEEV) DNA vaccine in an aerosol model of nonhuman primate infection was performed. Cynomolgus macaques vaccinated with a plasmid expressing the 26S structural genes of VEEV subtype IAB by particle-mediated epidermal delivery (PMED) developed virus-neutralizing antibodies. No serum viremia was detected in two out of three macaques vaccinated with the VEEV DNA after aerosol challenge with homologous virus, while one displayed a low viremia on a single day postchallenge. In contrast, all three macaques vaccinated with empty vector DNA developed a high viremia that persisted for at least 3 days after challenge. In addition, macaques vaccinated with the VEEV DNA had reduced febrile reactions, lymphopenia, and clinical signs of disease postchallenge as compared to negative control macaques. Therefore, although the sample size was small in this pilot study, these results indicate that a VEEV DNA vaccine administered by PMED can at least partially protect nonhuman primates against an aerosol VEEV challenge.


Assuntos
Anticorpos Neutralizantes/sangue , Encefalomielite Equina Venezuelana/prevenção & controle , Vacinas de DNA/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/sangue , Vírus da Encefalite Equina Venezuelana/imunologia , Feminino , Macaca fascicularis , Masculino , Projetos Piloto , Proteínas Estruturais Virais/imunologia , Viremia/imunologia
10.
Stem Cells ; 27(12): 3032-42, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19862839

RESUMO

During development, cell differentiation is accompanied by the progressive loss of pluripotent gene expression and developmental potential, although de-differentiation in specialized cells can be induced by reprogramming strategies, indicating that transdifferentiation potential is retained in adult cells. The stromal niche provides differentiating cues to epithelial stem cells (SCs), but current evidence is restricted to tissue types within the same developmental germ layer lineage. Anticipating the use of adult SCs for tissue regeneration, we examined if stroma can enforce lineage commitment across germ layer boundaries and promote transdifferentiation of adult epithelial SCs. Here, we report tissue-specific mesenchyme instructing epithelial cells from a different germ layer origin to express dual phenotypes. Prostatic stroma induced mammary epithelia (or enriched Lin(-)CD29(HI)CD24(+/MOD) mammary SCs) to generate glandular epithelia expressing both prostatic and mammary markers such as steroid hormone receptors and transcription factors including Foxa1, Nkx3.1, and GATA-3. Array data implicated Hh and Wnt pathways in mediating stromal-epithelial interactions (validated by increased Cyclin D1 expression). Other recombinants of prostatic mesenchyme and skin epithelia, or preputial gland mesenchyme and bladder or esophageal epithelia, showed foci expressing new markers adjacent to the original epithelial differentiation (e.g., sebaceous cells within bladder urothelium), confirming altered lineage specification induced by stroma and evidence of cross-germ layer transdifferentiation. Thus, stromal cell niche is critical in maintaining (or redirecting) differentiation in adult epithelia. In order to use adult epithelial SCs in regenerative medicine, we must additionally regulate their intrinsic properties to prevent (or enable) transdifferentiation in specified SC niches.


Assuntos
Células-Tronco Adultas/citologia , Linhagem da Célula , Células Epiteliais/citologia , Camadas Germinativas/citologia , Mesoderma/citologia , Células-Tronco Adultas/metabolismo , Animais , Diferenciação Celular , Células Epiteliais/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Camadas Germinativas/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Masculino , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/metabolismo , Mesoderma/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Próstata/citologia , Próstata/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
11.
Vaccine ; 27(31): 4152-60, 2009 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-19406186

RESUMO

We employed directed molecular evolution to improve the cross-reactivity and immunogenicity of the Venezuelan equine encephalitis virus (VEEV) envelope glycoproteins. The DNA encoding the E1 and E2 proteins from VEEV subtypes IA/B and IE, Mucambo virus (MUCV), and eastern and western equine encephalitis viruses (EEEV and WEEV) were recombined in vitro to create libraries of chimeric genes expressing variant envelope proteins. ELISAs specific for all five parent viruses were used in high-throughput screening to identify those recombinant DNAs that demonstrated cross-reactivity to VEEV, MUCV, EEEV, and WEEV after administration as plasmid vaccines in mice. Selected variants were then used to vaccinate larger cohorts of mice and their sera were assayed by both ELISA and by plaque reduction neutralization test (PRNT). Representative variants from a library in which the E1 gene from VEEV IA/B was held constant and only the E2 genes of the five parent viruses were recombined elicited significantly increased neutralizing antibody titers to VEEV IA/B compared to the parent DNA vaccine and provided improved protection against aerosol VEEV IA/B challenge. Our results indicate that it is possible to improve the immunogenicity and protective efficacy of alphavirus DNA vaccines using directed molecular evolution.


Assuntos
Evolução Molecular Direcionada , Vírus da Encefalite Equina Venezuelana/imunologia , Encefalomielite Equina Venezuelana/prevenção & controle , Vacinas de DNA/imunologia , Animais , Anticorpos Antivirais/sangue , Reações Cruzadas , Vírus da Encefalite Equina Venezuelana/genética , Ensaio de Imunoadsorção Enzimática , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização , Análise de Sobrevida , Vacinas de DNA/genética , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Ensaio de Placa Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA