RESUMO
Chemical screens across hundreds of cell lines have shown that the drug sensitivities of human cancers can vary by genotype or lineage. However, most drug discovery studies have relied on culture media that poorly reflect metabolite levels in human blood. Here, we perform drug screens in traditional and Human Plasma-Like Medium (HPLM). Sets of compounds that show conditional anticancer activity span different phases of global development and include non-oncology drugs. Comparisons of the synthetic and serum-derived components that comprise typical media trace sets of conditional phenotypes to nucleotide synthesis substrates. We also characterize a unique dual mechanism for brivudine, a compound approved for antiviral use. Brivudine selectively impairs cell growth in low folate conditions by targeting two enzymes involved in one-carbon metabolism. Cataloged gene essentiality data further suggest that conditional phenotypes for other compounds are linked to off-target effects. Our findings establish general strategies for identifying drug-nutrient interactions and mechanisms of action by exploiting conditional lethality in cancer cells.
Assuntos
Antineoplásicos , Humanos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patologia , Ensaios de Seleção de Medicamentos Antitumorais , Nutrientes/metabolismo , Proliferação de Células/efeitos dos fármacos , Meios de Cultura/química , Ácido Fólico/metabolismoRESUMO
H3K27M-mutant diffuse midline gliomas (DMGs) express high levels of the GD2 disialoganglioside and chimeric antigen receptor modified T-cells targeting GD2 (GD2-CART) eradicate DMGs in preclinical models. Arm A of the Phase I trial NCT04196413 administered one IV dose of autologous GD2-CART to patients with H3K27M-mutant pontine (DIPG) or spinal (sDMG) diffuse midline glioma at two dose levels (DL1=1e6/kg; DL2=3e6/kg) following lymphodepleting (LD) chemotherapy. Patients with clinical or imaging benefit were eligible for subsequent intracerebroventricular (ICV) GD2-CART infusions (10-30e6 GD2-CART). Primary objectives were manufacturing feasibility, tolerability, and identification of a maximally tolerated dose of IV GD2-CART. Secondary objectives included preliminary assessments of benefit. Thirteen patients enrolled and 11 received IV GD2-CART on study [n=3 DL1(3 DIPG); n=8 DL2(6 DIPG/2 sDMG). GD2-CART manufacturing was successful for all patients. No dose-limiting toxicities (DLTs) occurred on DL1, but three patients experienced DLT on DL2 due to grade 4 cytokine release syndrome (CRS). Nine patients received ICV infusions, which were not associated with DLTs. All patients exhibited tumor inflammation-associated neurotoxicity (TIAN). Four patients demonstrated major volumetric tumor reductions (52%, 54%, 91% and 100%). One patient exhibited a complete response ongoing for >30 months since enrollment. Eight patients demonstrated neurological benefit based upon a protocol-directed Clinical Improvement Score. Sequential IV followed by ICV GD2-CART induced tumor regressions and neurological improvements in patients with DIPG and sDMG. DL1 was established as the maximally tolerated IV GD2-CART dose. Neurotoxicity was safely managed with intensive monitoring and close adherence to a management algorithm.
RESUMO
BACKGROUND: Immunocompromised patients are at increased risk of SARS-CoV-2 infections. Patients undergoing chimeric antigen receptor (CAR) T-cell therapy for relapsed/refractory B-cell malignancies are uniquely immunosuppressed due to CAR T-mediated B-cell aplasia (BCA). While SARS-CoV-2 mortality rates of 33%-40% are reported in adult CAR T-cell recipients, outcomes in pediatric and young adult CAR T-cell recipients are limited. METHODS: We created an international retrospective registry of CAR T recipients aged 0-30 years infected with SARS-CoV-2 within 2 months prior to or any time after CAR T infusion. SARS-CoV-2-associated illness was graded as asymptomatic, mild, moderate, or severe COVID-19, or multisystem inflammatory syndrome in children (MIS-C). To assess for risk factors associated with significant SARS-CoV-2 infections (infections requiring hospital admission for respiratory distress or supplemental oxygen), univariate and multivariable regression analyses were performed. RESULTS: Nine centers contributed 78 infections in 75 patients. Of 70 SARS-CoV-2 infections occurring after CAR T infusion, 13 (18.6%) were classified as asymptomatic, 37 (52.9%) mild, 11 (15.7%) moderate, and 6 (8.6%) severe COVID-19. Three (4.3%) were classified as MIS-C. BCA was not significantly associated with infection severity. Prior to the emergence of the Omicron variant, of 47 infections, 19 (40.4%) resulted in hospital admission and 7 (14.9%) required intensive care, while after the emergence of the Omicron variant, of 23 infections, only 1 (4.3%) required admission and the remaining 22 (95.7%) had asymptomatic or mild COVID-19. Death occurred in 3 of 70 (4.3%); each death involved coinfection or life-threatening condition. In a multivariable model, factors associated with significant SARS-CoV-2 infection included having two or more comorbidities (OR 7.73, CI 1.05 to 74.8, p=0.048) and age ≥18 years (OR 9.51, CI 1.90 to 82.2, p=0.014). In the eight patients infected with SARS-CoV-2 before CAR T, half of these patients had their CAR T infusion delayed by 15-30 days. CONCLUSIONS: In a large international cohort of pediatric and young adult CAR-T recipients, SARS-CoV-2 infections resulted in frequent hospital and intensive care unit admissions and were associated with mortality in 4.3%. Patients with two or more comorbidities or aged ≥18 years were more likely to experience significant illness. Suspected Omicron infections were associated with milder disease.
Assuntos
COVID-19 , Infecções por Coronavirus , Pneumonia Viral , Receptores de Antígenos Quiméricos , Humanos , Criança , Adulto Jovem , Adolescente , Adulto , COVID-19/complicações , SARS-CoV-2 , Estudos Retrospectivos , Pneumonia Viral/complicações , Infecções por Coronavirus/complicações , Betacoronavirus , Recidiva Local de Neoplasia , Sistema de Registros , Terapia Baseada em Transplante de Células e TecidosRESUMO
Clinical pathways are evidence-based tools that have been integrated into many aspects of pediatric hospital medicine and have proven effective at reducing in-hospital complications from a variety of diseases. Adaptation of similar tools for specific, high-risk patient populations in pediatric oncology has been slower, in part due to patient complexities and variations in management strategies. There are few published studies of clinical pathways for pediatric oncology patients. Pediatric patients with a new diagnosis of leukemia or lymphoma often present with one or more "oncologic emergencies" that require urgent intervention and deliberate multidisciplinary care to prevent significant consequences. Here, we present two clinical pathways that have recently been developed using a multidisciplinary approach at a single institution, intended for the care of patients who present with hyperleukocytosis or an anterior mediastinal mass. These clinical care pathways have provided a critical framework for the immediate care of these patients who are often admitted to the pediatric intensive care unit for initial management. The goal of the pathways is to facilitate multidisciplinary collaborations, expedite diagnosis, and streamline timely treatment initiation. Standardizing the care of high-risk pediatric oncology patients will ultimately decrease morbidity and mortality associated with these diseases to increase the potential for excellent outcomes.
RESUMO
Diffuse intrinsic pontine glioma (DIPG) and other H3K27M-mutated diffuse midline gliomas (DMGs) are universally lethal paediatric tumours of the central nervous system1. We have previously shown that the disialoganglioside GD2 is highly expressed on H3K27M-mutated glioma cells and have demonstrated promising preclinical efficacy of GD2-directed chimeric antigen receptor (CAR) T cells2, providing the rationale for a first-in-human phase I clinical trial (NCT04196413). Because CAR T cell-induced brainstem inflammation can result in obstructive hydrocephalus, increased intracranial pressure and dangerous tissue shifts, neurocritical care precautions were incorporated. Here we present the clinical experience from the first four patients with H3K27M-mutated DIPG or spinal cord DMG treated with GD2-CAR T cells at dose level 1 (1 × 106 GD2-CAR T cells per kg administered intravenously). Patients who exhibited clinical benefit were eligible for subsequent GD2-CAR T cell infusions administered intracerebroventricularly3. Toxicity was largely related to the location of the tumour and was reversible with intensive supportive care. On-target, off-tumour toxicity was not observed. Three of four patients exhibited clinical and radiographic improvement. Pro-inflammatory cytokine levels were increased in the plasma and cerebrospinal fluid. Transcriptomic analyses of 65,598 single cells from CAR T cell products and cerebrospinal fluid elucidate heterogeneity in response between participants and administration routes. These early results underscore the promise of this therapeutic approach for patients with H3K27M-mutated DIPG or spinal cord DMG.
Assuntos
Astrocitoma , Neoplasias do Tronco Encefálico , Gangliosídeos , Glioma , Histonas , Imunoterapia Adotiva , Mutação , Receptores de Antígenos Quiméricos , Astrocitoma/genética , Astrocitoma/imunologia , Astrocitoma/patologia , Astrocitoma/terapia , Neoplasias do Tronco Encefálico/genética , Neoplasias do Tronco Encefálico/imunologia , Neoplasias do Tronco Encefálico/patologia , Neoplasias do Tronco Encefálico/terapia , Criança , Gangliosídeos/imunologia , Perfilação da Expressão Gênica , Glioma/genética , Glioma/imunologia , Glioma/patologia , Glioma/terapia , Histonas/genética , Humanos , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/imunologia , Neoplasias da Medula Espinal/genética , Neoplasias da Medula Espinal/imunologia , Neoplasias da Medula Espinal/patologia , Neoplasias da Medula Espinal/terapiaRESUMO
Chimeric antigen receptor (CAR) T cells hold promise for the treatment of acute myeloid leukemia (AML), but optimal targets remain to be defined. We demonstrate that CD93 CAR T cells engineered from a novel humanized CD93-specific binder potently kill AML in vitro and in vivo but spare hematopoietic stem and progenitor cells (HSPC). No toxicity is seen in murine models, but CD93 is expressed on human endothelial cells, and CD93 CAR T cells recognize and kill endothelial cell lines. We identify other AML CAR T-cell targets with overlapping expression on endothelial cells, especially in the context of proinflammatory cytokines. To address the challenge of endothelial-specific cross-reactivity, we provide proof of concept for NOT-gated CD93 CAR T cells that circumvent endothelial cell toxicity in a relevant model system. We also identify candidates for combinatorial targeting by profiling the transcriptome of AML and endothelial cells at baseline and after exposure to proinflammatory cytokines. SIGNIFICANCE: CD93 CAR T cells eliminate AML and spare HSPCs but exert on-target, off-tumor toxicity to endothelial cells. We show coexpression of other AML targets on endothelial cells, introduce a novel NOT-gated strategy to mitigate endothelial toxicity, and demonstrate use of high-dimensional transcriptomic profiling for rational design of combinatorial immunotherapies.See related commentary by Velasquez and Gottschalk, p. 559. This article is highlighted in the In This Issue feature, p. 549.
Assuntos
Imunoterapia Adotiva , Leucemia Mieloide Aguda , Animais , Linhagem Celular Tumoral , Células Endoteliais/patologia , Humanos , Imunoterapia Adotiva/métodos , Leucemia Mieloide Aguda/terapia , Camundongos , Linfócitos TRESUMO
Insufficient reactivity against cells with low antigen density has emerged as an important cause of chimeric antigen receptor (CAR) T-cell resistance. Little is known about factors that modulate the threshold for antigen recognition. We demonstrate that CD19 CAR activity is dependent upon antigen density and that the CAR construct in axicabtagene ciloleucel (CD19-CD28ζ) outperforms that in tisagenlecleucel (CD19-4-1BBζ) against antigen-low tumors. Enhancing signal strength by including additional immunoreceptor tyrosine-based activation motifs (ITAM) in the CAR enables recognition of low-antigen-density cells, whereas ITAM deletions blunt signal and increase the antigen density threshold. Furthermore, replacement of the CD8 hinge-transmembrane (H/T) region of a 4-1BBζ CAR with a CD28-H/T lowers the threshold for CAR reactivity despite identical signaling molecules. CARs incorporating a CD28-H/T demonstrate a more stable and efficient immunologic synapse. Precise design of CARs can tune the threshold for antigen recognition and endow 4-1BBζ-CARs with enhanced capacity to recognize antigen-low targets while retaining a superior capacity for persistence. SIGNIFICANCE: Optimal CAR T-cell activity is dependent on antigen density, which is variable in many cancers, including lymphoma and solid tumors. CD28ζ-CARs outperform 4-1BBζ-CARs when antigen density is low. However, 4-1BBζ-CARs can be reengineered to enhance activity against low-antigen-density tumors while maintaining their unique capacity for persistence.This article is highlighted in the In This Issue feature, p. 627.
Assuntos
Receptores de Antígenos Quiméricos/metabolismo , Animais , Humanos , Camundongos , Transdução de SinaisRESUMO
Patients with high risk neuroblastoma have a poor prognosis and survivors are often left with debilitating long term sequelae from treatment. Even after integration of anti-GD2 monoclonal antibody therapy into standard, upftont protocols, 5-year overall survival rates are only about 50%. The success of anti-GD2 therapy has proven that immunotherapy can be effective in neuroblastoma. Adoptive transfer of chimeric antigen receptor (CAR) T cells has the potential to build on this success. In early phase clinical trials, CAR T cell therapy for neuroblastoma has proven safe and feasible, but significant barriers to efficacy remain. These include lack of T cell persistence and potency, difficulty in target identification, and an immunosuppressive tumor microenvironment. With recent advances in CAR T cell engineering, many of these issues are being addressed in the laboratory. In this review, we summarize the clinical trials that have been completed or are underway for CAR T cell therapy in neuroblastoma, discuss the conclusions and open questions derived from these trials, and consider potential strategies to improve CAR T cell therapy for patients with neuroblastoma.
Assuntos
Imunoterapia Adotiva , Neuroblastoma/imunologia , Neuroblastoma/terapia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Fatores Etários , Animais , Antígenos de Neoplasias/imunologia , Ensaios Clínicos como Assunto , Engenharia Genética , Humanos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Neuroblastoma/patologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética , Especificidade do Receptor de Antígeno de Linfócitos T/genética , Especificidade do Receptor de Antígeno de Linfócitos T/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Resultado do TratamentoRESUMO
Papillomaviruses (PV) comprise a large family of nonenveloped DNA viruses that include the oncogenic PV types that are the causative agents of human cervical cancer. As is true of many animal DNA viruses, PV are taken into the cell by endocytosis and must escape from the endosomal compartment to the cytoplasm to initiate infection. Here we show that this step depends on the site-specific enzymatic cleavage of the PV minor virion protein L2 at a consensus furin recognition site. Cleavage by furin, a cell-encoded proprotein convertase, is known to be required for endosome escape by many bacterial toxins. However, to our knowledge, furin has not been previously implicated in the viral entry process. This step is potentially a target for PV inhibition.