Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Geroscience ; 46(2): 2739-2754, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38159133

RESUMO

Aging has a significant impact on the immune system, leading to a gradual decline in immune function and changes in the body's ability to respond to bacterial infections. Non-tuberculous mycobacteria (NTM), also known as atypical mycobacteria or environmental mycobacteria, are commonly found in soil, water, and various environmental sources. While many NTM species are considered opportunistic pathogens, some can cause significant infections, particularly in individuals with compromised immune systems, such as older individuals. When mycobacteria enter the body, macrophages are among the first immune cells to encounter them and attempt to engulf mycobacteria through a process called phagocytosis. Some NTM species, including Mycobacterium avium (M. avium) can survive and replicate within macrophages. However, little is known about the interaction between NTM and macrophages in older individuals. In this study, we investigated the response of bone marrow-derived macrophage (BMMs) isolated from young (5 months) and old (25 months) mice to M. avium serotype 4, one of the main NTM species in patients with pulmonary NTM diseases. Our results demonstrated that BMMs from old mice have an increased level of intracellular iron and are more susceptible to M. avium serotype 4 infection compared to BMMs from young mice. The whole-cell proteomic analysis indicated a dysregulated expression of iron homeostasis-associated proteins in old BMMs regardless of mycobacterial infection. Deferoxamine, an iron chelator, significantly rescued mycobacterial killing and phagolysosome maturation in BMMs from old mice. Therefore, our data for the first time indicate that an intracellular iron accumulation improves NTM survival within macrophages from old mice and suggest a potential application of iron-chelating drugs as a host-directed therapy for pulmonary NTM infection in older individuals.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Proteômica , Humanos , Animais , Camundongos , Idoso , Infecções por Mycobacterium não Tuberculosas/microbiologia , Micobactérias não Tuberculosas/fisiologia , Macrófagos , Fagocitose
2.
J Gerontol A Biol Sci Med Sci ; 78(5): 771-779, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-36762848

RESUMO

We generated a genetically heterogenous rat model by a 4-way cross strategy using 4 inbred strains (Brown Norway [BN], Fischer 344 [F344], Lewis [LEW], and Wistar Kyoto [KY]) to provide investigators with a highly genetically diverse rat model from commercially available inbred rats. We made reciprocal crosses between males and females from the 2 F1 hybrids to generate genetically heterogeneous rats with mitochondrial genomes from either the BN (OKC-HETB, a.k.a "B" genotype) or WKY (OKC-HETW a.k.a "W" genotype) parental strains. These two mitochondrial genomes differ at 94 nucleotides, more akin to human mitochondrial genome diversity than that available in classical laboratory mouse strains. Body weights of the B and W genotypes were similar. However, mitochondrial genotype antagonistically affected grip strength and treadmill endurance in females only. In addition, mitochondrial genotype significantly affected multiple responses to a high-fat diet (HFD) and treatment with 17α-estradiol. Contrary to findings in mice in which males only are affected by 17α-estradiol supplementation, female rats fed a HFD beneficially responded to 17α-estradiol treatment as evidenced by declines in body mass, adiposity, and liver mass. Male rats, by contrast, differed in a mitochondrial genotype-specific manner, with only B males responding to 17α-estradiol treatment. Mitochondrial genotype and sex differences were also observed in features of brain-specific antioxidant response to a HFD and 17α-estradiol as shown by hippocampal levels of Sod2 acetylation, JNK, and FoxO3a. These results emphasize the importance of mitochondrial genotype in assessing responses to putative interventions in aging processes.


Assuntos
Genoma Mitocondrial , Humanos , Ratos , Feminino , Masculino , Animais , Camundongos , Ratos Endogâmicos F344 , Ratos Endogâmicos WKY , Ratos Endogâmicos Lew , Ratos Endogâmicos , Estradiol
3.
Aging Cell ; 21(8): e13676, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35869934

RESUMO

The goal of this study was to test the role cellular senescence plays in the increased inflammation, chronic liver disease, and hepatocellular carcinoma seen in mice null for Cu/Zn-Superoxide dismutase (Sod1KO). To inhibit senescence, wildtype (WT) and Sod1KO mice were given the senolytics, dasatinib, and quercetin (D + Q) at 6 months of age when the Sod1KO mice begin exhibiting signs of accelerated aging. Seven months of D + Q treatment reduced the expression of p16 in the livers of Sod1KO mice to WT levels and the expression of several senescence-associated secretory phenotype factors (IL-6, IL-1ß, CXCL-1, and GDF-15). D + Q treatment also reduced markers of inflammation in livers of the Sod1KO mice, for example, cytokines, chemokines, macrophage levels, and Kupffer cell clusters. D + Q treatment had no effect on various markers of liver fibrosis in the Sod1KO mice but reduced the expression of genes involved in liver cancer and dramatically reduced the incidence of hepatocellular carcinoma. Surprisingly, D + Q also reduced markers of necroptosis (phosphorylated and oligomerized MLKL) in the Sod1KO mice to WT levels. We also found that inhibiting necroptosis in the Sod1KO mice with necrostatin-1s reduced the markers of cellular senescence (p16, p21, and p53). Our study suggests that an interaction occurs between cellular senescence and necroptosis in the liver of Sod1KO mice. We propose that these two cell fates interact through a positive feedback loop resulting in a cycle amplifying both cellular senescence and necroptosis leading to inflammaging and age-associated pathology in the Sod1KO mice.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Biomarcadores/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Senescência Celular/genética , Dasatinibe/farmacologia , Inflamação/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Camundongos , Camundongos Knockout , Necroptose , Quercetina/farmacologia , Senoterapia , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
4.
Aging Cell ; 20(12): e13512, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34761505

RESUMO

Inflammaging, characterized by an increase in low-grade chronic inflammation with age, is a hallmark of aging and is strongly associated with various age-related diseases, including chronic liver disease (CLD) and hepatocellular carcinoma (HCC). Because necroptosis is a cell death pathway that induces inflammation through the release of DAMPs, we tested the hypothesis that age-associated increase in necroptosis contributes to chronic inflammation in aging liver. Phosphorylation of MLKL and MLKL oligomers, markers of necroptosis, as well as phosphorylation of RIPK3 and RIPK1 were significantly upregulated in the livers of old mice relative to young mice and this increase occurred in the later half of life (i.e., after 18 months of age). Markers of M1 macrophages, expression of pro-inflammatory cytokines (TNFα, IL6 and IL1ß), and markers of fibrosis were all significantly upregulated in the liver with age and the change in necroptosis paralleled the changes in inflammation and fibrosis. Hepatocytes and liver macrophages isolated from old mice showed elevated levels of necroptosis markers as well as increased expression of pro-inflammatory cytokines relative to young mice. Short-term treatment with the necroptosis inhibitor, necrostatin-1s (Nec-1s), reduced necroptosis, markers of M1 macrophages, fibrosis, and cell senescence as well as reducing the expression of pro-inflammatory cytokines in the livers of old mice. Thus, our data show for the first time that liver aging is associated with increased necroptosis and necroptosis contributes to chronic inflammation in the liver, which in turn appears to contribute to liver fibrosis and possibly CLD.


Assuntos
Fibrose/fisiopatologia , Inflamação/fisiopatologia , Fígado/patologia , Necroptose/genética , Envelhecimento , Doença Crônica
5.
J Cachexia Sarcopenia Muscle ; 12(6): 1582-1596, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34559475

RESUMO

BACKGROUND: Oxidative stress and damage are associated with a number of ageing phenotypes, including age-related loss of muscle mass and reduced contractile function (sarcopenia). Our group and others have reported loss of neuromuscular junction (NMJ) integrity and increased denervation as initiating factors in sarcopenia, leading to mitochondrial dysfunction, generation of reactive oxygen species and peroxides, and loss of muscle mass and weakness. Previous studies from our laboratory show that denervation-induced skeletal muscle mitochondrial peroxide generation is highly correlated to muscle atrophy. Here, we directly test the impact of scavenging muscle mitochondrial hydrogen peroxide on the structure and function of the NMJ and muscle mass and function in a mouse model of denervation-induced muscle atrophy CuZnSOD (Sod1-/- mice, Sod1KO). METHODS: Whole-body Sod1KO mice were crossed to mice with increased expression of human catalase (MCAT) targeted specifically to mitochondria in skeletal muscle (mMCAT mice) to determine the impact of reduced hydrogen peroxide levels on key targets of sarcopenia, including mitochondrial function, NMJ structure and function, and indices of muscle mass and function. RESULTS: Female adult (~12-month-old) Sod1KO mice show a number of sarcopenia-related phenotypes in skeletal muscle including reduced mitochondrial oxygen consumption and elevated reactive oxygen species generation, fragmentation, and loss of innervated NMJs (P < 0.05), a 30% reduction in muscle mass (P < 0.05), a 36% loss of force generation (P < 0.05), and a loss of exercise capacity (305 vs. 709 m in wild-type mice, P < 0.05). Muscle from Sod1KO mice also shows a 35% reduction in sarco(endo)plasmic reticulum ATPase activity (P < 0.05), changes in the amount of calcium-regulating proteins, and altered fibre-type composition. In contrast, increased catalase expression in the mMCAT × Sod1KO mice completely prevents the mitochondrial and NMJ-related phenotypes and maintains muscle mass and force generation. The reduction in exercise capacity is also partially inhibited (~35%, P < 0.05), and the loss of fibre cross-sectional area is inhibited by ~50% (P < 0.05). CONCLUSIONS: Together, these striking findings suggest that scavenging of mitochondrial peroxide generation by mMCAT expression efficiently prevents mitochondrial dysfunction and NMJ disruption associated with denervation-induced atrophy and weakness, supporting mitochondrial H2 O2 as an important effector of NMJ alterations that lead to phenotypes associated with sarcopenia.


Assuntos
Sarcopenia , Animais , Catalase/genética , Catalase/metabolismo , Feminino , Camundongos , Mitocôndrias/patologia , Músculo Esquelético/metabolismo , Junção Neuromuscular/metabolismo , Sarcopenia/genética , Sarcopenia/metabolismo
6.
Free Radic Biol Med ; 164: 315-328, 2021 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-33429022

RESUMO

Mice deficient in the antioxidant enzyme Cu/Zn-superoxide dismutase (Sod1-/- or Sod1KO mice) have increased oxidative stress, show accelerated aging and develop spontaneous hepatocellular carcinoma (HCC) with age. Similar to humans, HCC development in Sod1KO mice progresses from non-alcoholic fatty liver disease (NAFLD) to non-alcoholic steatohepatitis (NASH) with fibrosis, which eventually progresses to HCC. Oxidative stress plays a role in NAFLD to NASH progression, and liver inflammation is the main mechanism that drives the disease progression from NASH to fibrosis. Because necroptosis is a major source of inflammation, we tested the hypothesis that increased necroptosis in the liver plays a role in increased inflammation and fibrosis in Sod1KO mice. Phosphorylation of MLKL (P-MLKL), a well-accepted marker of necroptosis, and expression of MLKL protein were significantly increased in the livers of Sod1KO mice compared to wild type (WT) mice indicating increased necroptosis. Similarly, phosphorylation of RIPK3 and RIPK3 protein levels were also significantly increased. Markers of pro-inflammatory M1 macrophages, NLRP3 inflammasome, and transcript levels of pro-inflammatory cytokines and chemokines, e.g., TNFα, IL-6, IL-1ß, and Ccl2 that are associated with human NASH, were significantly increased. Expression of antioxidant enzymes and heat shock proteins, and markers of fibrosis and oncogenic transcription factor STAT3 were also upregulated and autophagy was downregulated in the livers of Sod1KO mice. Short term treatment of Sod1KO mice with necrostatin-1s (Nec-1s), a necroptosis inhibitor, reversed these conditions. Our data show for the first time that necroptosis-mediated inflammation contributes to fibrosis in a mouse model of increased oxidative stress and accelerated aging, that also exhibits progressive HCC development.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Animais , Carcinoma Hepatocelular/patologia , Modelos Animais de Doenças , Fibrose , Inflamação/metabolismo , Fígado/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Necroptose , Hepatopatia Gordurosa não Alcoólica/metabolismo , Estresse Oxidativo
7.
Front Aging ; 2: 821904, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35821997

RESUMO

Aging results in the progressive accumulation of senescent cells in tissues that display loss of proliferative capacity and acquire a senescence-associated secretory phenotype (SASP). The tumor suppressor, p16 INK4A , which slows the progression of the cell cycle, is highly expressed in most senescent cells and the removal of p16-expressing cells has been shown to be beneficial to tissue health. Although much work has been done to assess the effects of cellular senescence on a variety of different organs, little is known about the effects on skeletal muscle and whether reducing cellular senescent load would provide a therapeutic benefit against age-related muscle functional decline. We hypothesized that whole-body ablation of p16-expressing cells in the advanced stages of life in mice would provide a therapeutic benefit to skeletal muscle structure and function. Treatment of transgenic p16-3MR mice with ganciclovir (GCV) from 20 to 26 months of age resulted in reduced p16 mRNA levels in muscle. At 26 months of age, the masses of tibialis anterior, extensor digitorum longus, gastrocnemius and quadriceps muscles were significantly larger in GCV-treated compared with vehicle-treated mice, but this effect was limited to male mice. Maximum isometric force for gastrocnemius muscles was also greater in GCV-treated male mice compared to controls. Further examination of muscles of GCV- and vehicle-treated mice showed fewer CD68-positive macrophages present in the tissue following GCV treatment. Plasma cytokine levels were also measured with only one, granulocyte colony stimulating factor (G-CSF), out of 22 chemokines analyzed was reduced in GCV-treated mice. These findings show that genetic ablation of p16+ senescent cells provides moderate and sex specific therapeutic benefits to muscle mass and function.

8.
Geroscience ; 43(3): 1135-1158, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33037985

RESUMO

In 2009, rapamycin was reported to increase the lifespan of mice when implemented later in life. This observation resulted in a sea-change in how researchers viewed aging. This was the first evidence that a pharmacological agent could have an impact on aging when administered later in life, i.e., an intervention that did not have to be implemented early in life before the negative impact of aging. Over the past decade, there has been an explosion in the number of reports studying the effect of rapamycin on various diseases, physiological functions, and biochemical processes in mice. In this review, we focus on those areas in which there is strong evidence for rapamycin's effect on aging and age-related diseases in mice, e.g., lifespan, cardiac disease/function, central nervous system, immune system, and cell senescence. We conclude that it is time that pre-clinical studies be focused on taking rapamycin to the clinic, e.g., as a potential treatment for Alzheimer's disease.


Assuntos
Envelhecimento , Sirolimo , Animais , Longevidade , Camundongos , Sirolimo/farmacologia
9.
Aging Cell ; 19(11): e13269, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33145977

RESUMO

To see if variations in timing of rapamycin (Rapa), administered to middle aged mice starting at 20 months, would lead to different survival outcomes, we compared three dosing regimens. Initiation of Rapa at 42 ppm increased survival significantly in both male and female mice. Exposure to Rapa for a 3-month period led to significant longevity benefit in males only. Protocols in which each month of Rapa treatment was followed by a month without Rapa exposure were also effective in both sexes, though this approach was less effective than continuous exposure in female mice. Interpretation of these results is made more complicated by unanticipated variation in patterns of weight gain, prior to the initiation of the Rapa treatment, presumably due to the use of drug-free food from two different suppliers. The experimental design included tests of four other drugs, minocycline, ß-guanidinopropionic acid, MitoQ, and 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), but none of these led to a change in survival in either sex.


Assuntos
Antibióticos Antineoplásicos/uso terapêutico , Longevidade/efeitos dos fármacos , Sirolimo/uso terapêutico , Animais , Antibióticos Antineoplásicos/farmacologia , Feminino , Masculino , Camundongos , Fatores Sexuais , Sirolimo/farmacologia
10.
J Cachexia Sarcopenia Muscle ; 11(6): 1688-1704, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32918528

RESUMO

BACKGROUND: Cancer is associated with muscle atrophy (cancer cachexia) that is linked to up to 40% of cancer-related deaths. Oxidative stress is a critical player in the induction and progression of age-related loss of muscle mass and weakness (sarcopenia); however, the role of oxidative stress in cancer cachexia has not been defined. The purpose of this study was to examine if elevated oxidative stress exacerbates cancer cachexia. METHODS: Cu/Zn superoxide dismutase knockout (Sod1KO) mice were used as an established mouse model of elevated oxidative stress. Cancer cachexia was induced by injection of one million Lewis lung carcinoma (LLC) cells or phosphate-buffered saline (saline) into the hind flank of female wild-type mice or Sod1KO mice at approximately 4 months of age. The tumour developed for 3 weeks. Muscle mass, contractile function, neuromuscular junction (NMJ) fragmentation, metabolic proteins, mitochondrial function, and motor neuron function were measured in wild-type and Sod1KO saline and tumour-bearing mice. Data were analysed by two-way ANOVA with Tukey-Kramer post hoc test when significant F ratios were determined and α was set at 0.05. Unless otherwise noted, results in abstract are mean ±SEM. RESULTS: Muscle mass and cross-sectional area were significantly reduced, in tumour-bearing mice. Metabolic enzymes were dysregulated in Sod1KO mice and cancer exacerbated this phenotype. NMJ fragmentation was exacerbated in tumour-bearing Sod1KO mice. Myofibrillar protein degradation increased in tumour-bearing wild-type mice (wild-type saline, 0.00847 ± 0.00205; wildtype LLC, 0.0211 ± 0.00184) and tumour-bearing Sod1KO mice (Sod1KO saline, 0.0180 ± 0.00118; Sod1KO LLC, 0.0490 ± 0.00132). Muscle mitochondrial oxygen consumption was reduced in tumour-bearing mice compared with saline-injected wild-type mice. Mitochondrial protein degradation increased in tumour-bearing wild-type mice (wild-type saline, 0.0204 ± 0.00159; wild-type LLC, 0.167 ± 0.00157) and tumour-bearing Sod1KO mice (Sod1KO saline, 0.0231 ± 0.00108; Sod1 KO LLC, 0.0645 ± 0.000631). Sciatic nerve conduction velocity was decreased in tumour-bearing wild-type mice (wild-type saline, 38.2 ± 0.861; wild-type LLC, 28.8 ± 0.772). Three out of eleven of the tumour-bearing Sod1KO mice did not survive the 3-week period following tumour implantation. CONCLUSIONS: Oxidative stress does not exacerbate cancer-induced muscle loss; however, cancer cachexia may accelerate NMJ disruption.


Assuntos
Caquexia , Carcinoma Pulmonar de Lewis , Animais , Caquexia/etiologia , Carcinoma Pulmonar de Lewis/complicações , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Knockout , Estresse Oxidativo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
11.
Geroscience ; 42(6): 1579-1591, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32451848

RESUMO

The maintenance of skeletal muscle mass depends on the overall balance between the rates of protein synthesis and degradation. Thus, age-related muscle atrophy and function, commonly known as sarcopenia, may result from decreased protein synthesis, increased proteolysis, or simultaneous changes in both processes governed by complex multifactorial mechanisms. Growing evidence implicates oxidative stress and reactive oxygen species (ROS) as an essential regulator of proteolysis. Our previous studies have shown that genetic deletion of CuZn superoxide dismutase (CuZnSOD, Sod1) in mice leads to elevated oxidative stress, muscle atrophy and weakness, and an acceleration in age-related phenotypes associated with sarcopenia. The goal of this study is to determine whether oxidative stress directly influences the acceleration of proteolysis in skeletal muscle of Sod1-/- mice as a function of age. Compared to control, Sod1-/- muscle showed a significant elevation in protein carbonyls and 3-nitrotyrosine levels, suggesting high oxidative and nitrosative protein modifications were present. In addition, age-dependent muscle atrophy in Sod1-/- muscle was accompanied by an upregulation of the cysteine proteases, calpain, and caspase-3, which are known to play a key role in the initial breakdown of sarcomeres during atrophic conditions. Furthermore, an increase in oxidative stress-induced muscle atrophy was also strongly coupled with simultaneous activation of two major proteolytic systems, the ubiquitin-proteasome and lysosomal autophagy pathways. Collectively, our data suggest that chronic oxidative stress in Sod1-/- mice accelerates age-dependent muscle atrophy by enhancing coordinated activation of the proteolytic systems, thereby resulting in overall protein degradation.


Assuntos
Atrofia Muscular , Superóxidos , Animais , Camundongos , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Estresse Oxidativo , Proteólise , Superóxidos/metabolismo
13.
J Cachexia Sarcopenia Muscle ; 10(2): 411-428, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30706998

RESUMO

BACKGROUND: Excess reactive oxygen species (ROS) and muscle weakness occur in parallel in multiple pathological conditions. However, the causative role of skeletal muscle mitochondrial ROS (mtROS) on neuromuscular junction (NMJ) morphology and function and muscle weakness has not been directly investigated. METHODS: We generated mice lacking skeletal muscle-specific manganese-superoxide dismutase (mSod2KO) to increase mtROS using a cre-Lox approach driven by human skeletal actin. We determined primary functional parameters of skeletal muscle mitochondrial function (respiration, ROS, and calcium retention capacity) using permeabilized muscle fibres and isolated muscle mitochondria. We assessed contractile properties of isolated skeletal muscle using in situ and in vitro preparations and whole lumbrical muscles to elucidate the mechanisms of contractile dysfunction. RESULTS: The mSod2KO mice, contrary to our prediction, exhibit a 10-15% increase in muscle mass associated with an ~50% increase in central nuclei and ~35% increase in branched fibres (P < 0.05). Despite the increase in muscle mass of gastrocnemius and quadriceps, in situ sciatic nerve-stimulated isometric maximum-specific force (N/cm2 ), force per cross-sectional area, is impaired by ~60% and associated with increased NMJ fragmentation and size by ~40% (P < 0.05). Intrinsic alterations of components of the contractile machinery show elevated markers of oxidative stress, for example, lipid peroxidation is increased by ~100%, oxidized glutathione is elevated by ~50%, and oxidative modifications of myofibrillar proteins are increased by ~30% (P < 0.05). We also find an approximate 20% decrease in the intracellular calcium transient that is associated with specific force deficit. Excess superoxide generation from the mitochondrial complexes causes a deficiency of succinate dehydrogenase and reduced complex-II-mediated respiration and adenosine triphosphate generation rates leading to severe exercise intolerance (~10 min vs. ~2 h in wild type, P < 0.05). CONCLUSIONS: Increased skeletal muscle mtROS is sufficient to elicit NMJ disruption and contractile abnormalities, but not muscle atrophy, suggesting new roles for mitochondrial oxidative stress in maintenance of muscle mass through increased fibre branching.

14.
J Cachexia Sarcopenia Muscle ; 9(5): 1003-1017, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30073804

RESUMO

BACKGROUND: We have previously shown that the deletion of the superoxide scavenger, CuZn superoxide dismutase, in mice (Sod1-/- mice) results in increased oxidative stress and an accelerated loss of skeletal muscle mass and force that mirror the changes seen in old control mice. The goal of this study is to define the effect of oxidative stress and ageing on muscle weakness and the Excitation Contraction (EC) coupling machinery in age-matched adult (8-10 months) wild-type (WT) and Sod1-/- mice in comparison with old (25-28 months) WT mice. METHODS: In vitro contractile assays were used to measure muscle contractile parameters. The activity of the sarcoplasmic reticulum Ca2+ ATPase (SERCA) pump was measured using an NADH-linked enzyme assay. Immunoblotting and immunofluorescence techniques were used to measure protein expression, and real-time reverse transcription PCR was used to measure gene expression. RESULTS: The specific force generated by the extensor digitorum longus muscle was reduced in the Sod1-/- and old WT mice compared with young WT mice along with significant prolongation of time to peak force, increased half relaxation time, and disruption of intracellular calcium handling. The maximal activity of the SERCA calcium uptake pump was significantly reduced in gastrocnemius muscle from both old WT (≈14%) and adult Sod1-/- (≈33%) mice compared with young WT mice along with increased expression of sarcolipin, a known inhibitor of SERCA activity. Protein levels of the voltage sensor and calcium uptake channel proteins dihydropyridine receptor α1 and SERCA2 were significantly elevated (≈45% and ≈57%, respectively), while the ratio of calstabin, a channel stabilizing protein, to ryanodine receptor was significantly reduced (≈21%) in Sod1-/- mice compared with young WT mice. The changes in calcium handling were accompanied by substantially elevated levels of global protein carbonylation and lipid peroxidation. CONCLUSIONS: Our data suggest that the muscle weakness in Sod1-/- and old WT mice is in part driven by reactive oxygen species-mediated EC uncoupling and supports a role for reduced SERCA pump activity in compromised muscle function. The novel quantitative mechanistic data provided here can lead to potential therapeutic interventions of SERCA dysfunction for sarcopenia and muscle diseases.


Assuntos
Acoplamento Excitação-Contração , Debilidade Muscular/etiologia , Debilidade Muscular/metabolismo , Músculo Esquelético/metabolismo , Estresse Oxidativo , Animais , Biomarcadores , Peso Corporal , Cálcio/metabolismo , Sinalização do Cálcio , Modelos Animais de Doenças , Espaço Intracelular/metabolismo , Camundongos , Camundongos Knockout , Debilidade Muscular/fisiopatologia , Músculo Esquelético/fisiopatologia , Processamento de Proteína Pós-Traducional , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Superóxido Dismutase-1/metabolismo
15.
Geroscience ; 40(2): 123-137, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29687240

RESUMO

Cognitive function declines substantially with age in both humans and animal models. In humans, this decline is associated with decreases in independence and quality of life. Although the methodology for analysis of cognitive function in human models is relatively well established, similar analyses in animal models have many technical issues (e.g., unintended experimenter bias, motivational issues, stress, and testing during the light phase of the light dark cycle) that limit interpretation of the results. These caveats, and others, potentially bias the interpretation of studies in rodents and prevent the application of current tests of learning and memory as part of an overall healthspan assessment in rodent models of aging. The goal of this study was to establish the methodology to assess cognitive function in aging animals that addresses many of these concerns. Here, we use a food reward-based discrimination procedure with minimal stress in C57Bl/6J male mice at 6, 21, and 27 months of age, followed by a reversal task to assess behavioral flexibility. Importantly, the procedures minimize issues related to between-experimenter confounds and are conducted during both the dark and light phases of the light dark cycle in a home-cage setting. During cognitive testing, we were able to assess multiple measures of spontaneous movement and diurnal activity in young and aged mice including, distance moved, velocity, and acceleration over a 90-h period. Both initial discrimination and reversal learning significantly decreased with age and, similar to rats and humans, not all old mice demonstrated impairments in learning with age. These results permitted classification of animals based on their cognitive status. Analysis of movement parameters indicated decreases in distance moved as well as velocity and acceleration with increasing age. Based on these data, we developed preliminary models indicating, as in humans, a close relationship exists between age-related movement parameters and cognitive ability. Our results provide a reliable method for assessing cognitive performance with minimal stress and simultaneously provide key information on movement and diurnal activity. These methods represent a novel approach to developing non-invasive healthspan measures in rodent models that allow standardization across laboratories.


Assuntos
Envelhecimento/fisiologia , Comportamento Animal/fisiologia , Ritmo Circadiano/fisiologia , Cognição/fisiologia , Atividade Motora/fisiologia , Envelhecimento/psicologia , Animais , Intervalos de Confiança , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Razão de Chances , Reversão de Aprendizagem , Memória Espacial/fisiologia
16.
Antioxid Redox Signal ; 28(4): 275-295, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29065712

RESUMO

AIMS: Lack of Cu,Zn-superoxide dismutase (CuZnSOD) in homozygous knockout mice (Sod1-/-) leads to accelerated age-related muscle loss and weakness, but specific deletion of CuZnSOD in skeletal muscle (mSod1KO mice) or neurons (nSod1KO mice) resulted in only mild muscle functional deficits and failed to recapitulate the loss of mass and function observed in Sod1-/- mice. To dissect any underlying cross-talk between motor neurons and skeletal muscle in the degeneration in Sod1-/- mice, we characterized neuromuscular changes in the Sod1-/- model compared with mSod1KO mice and examined degenerative molecular mechanisms and pathways in peripheral nerve and skeletal muscle. RESULTS: In contrast to mSod1KO mice, myofiber atrophy in Sod1-/- mice was associated with increased muscle oxidative damage, neuromuscular junction degeneration, denervation, nerve demyelination, and upregulation of proteins involved in maintenance of myelin sheaths. Proteomic analyses confirmed increased proteasomal activity and adaptive stress responses in muscle of Sod1-/- mice that were absent in mSod1KO mice. Peripheral nerve from neither Sod1-/- nor mSod1KO mice showed increased oxidative damage or molecular responses to increased oxidation compared with wild type mice. Differential cysteine (Cys) labeling revealed a specific redox shift in the catalytic Cys residue of peroxiredoxin 6 (Cys47) in the peripheral nerve from Sod1-/- mice. Innovation and Conclusion: These findings demonstrate that neuromuscular integrity, redox mechanisms, and pathways are differentially altered in nerve and muscle of Sod1-/- and mSod1KO mice. Results support the concept that impaired redox signaling, rather than oxidative damage, in peripheral nerve plays a key role in muscle loss in Sod1-/- mice and potentially sarcopenia during aging. Antioxid. Redox Signal. 28, 275-295.


Assuntos
Músculo Esquelético/metabolismo , Degeneração Neural/genética , Junção Neuromuscular/genética , Superóxido Dismutase-1/genética , Envelhecimento/genética , Envelhecimento/patologia , Animais , Humanos , Camundongos , Camundongos Knockout , Neurônios Motores/patologia , Músculo Esquelético/patologia , Degeneração Neural/patologia , Junção Neuromuscular/patologia , Neurônios/metabolismo , Neurônios/patologia , Oxirredução , Estresse Oxidativo/genética , Peroxirredoxina VI/genética , Proteômica , Sarcopenia/genética , Sarcopenia/patologia , Transdução de Sinais/genética
17.
Redox Biol ; 11: 30-37, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27846439

RESUMO

In contrast to other mouse models that are deficient in antioxidant enzymes, mice null for Cu/Zn-superoxide dismutase (Sod1-/- mice) show a major decrease in lifespan and several accelerated aging phenotypes. The goal of this study was to determine if cell senescence might be a contributing factor in the accelerated aging phenotype observed in the Sod1-/- mice. We focused on kidney because it is a tissue that has been shown to a significant increase in senescent cells with age. The Sod1-/- mice are characterized by high levels of DNA oxidation in the kidney, which is attenuated by DR. The kidney of the Sod1-/- mice also have higher levels of double strand DNA breaks than wild type (WT) mice. Expression (mRNA and protein) of p16 and p21, two of the markers of cellular senescence, which increased with age, are increased significantly in the kidney of Sod1-/- mice as is ß-gal staining cells. In addition, the senescence associated secretory phenotype was also increased significantly in the kidney of Sod1-/- mice compared to WT mice as measured by the expression of transcripts for IL-6 and IL-1ß. Dietary restriction of the Sod1-/- mice attenuated the increase in DNA damage, cellular senescence, and expression of IL-6 and IL-1ß. Interestingly, the Sod1-/- mice showed higher levels of circulating cytokines than WT mice, suggesting that the accelerated aging phenotype shown by the Sod1-/- mice could result from increased inflammation arising from an accelerated accumulation of senescent cells. Based on our data with Sod1-/- mice, we propose that various bouts of increased oxidative stress over the lifespan of an animal leads to the accumulation of senescent cells. The accumulation of senescent cells in turn leads to increased inflammation, which plays a major role in the loss of function and increased pathology that are hallmark features of aging.


Assuntos
Envelhecimento/genética , Senescência Celular/genética , Interleucina-1beta/genética , Interleucina-6/genética , Superóxido Dismutase-1/genética , Envelhecimento/patologia , Animais , Inibidor p16 de Quinase Dependente de Ciclina/genética , Quebras de DNA de Cadeia Dupla , Dano ao DNA/genética , Humanos , Inflamação/genética , Inflamação/patologia , Rim/metabolismo , Rim/patologia , Camundongos , Camundongos Knockout , Oxirredução , Estresse Oxidativo/genética , Quinases Ativadas por p21/genética
18.
Aging Cell ; 15(5): 872-84, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27312235

RESUMO

The National Institute on Aging Interventions Testing Program (ITP) evaluates agents hypothesized to increase healthy lifespan in genetically heterogeneous mice. Each compound is tested in parallel at three sites, and all results are published. We report the effects of lifelong treatment of mice with four agents not previously tested: Protandim, fish oil, ursodeoxycholic acid (UDCA) and metformin - the latter with and without rapamycin, and two drugs previously examined: 17-α-estradiol and nordihydroguaiaretic acid (NDGA), at doses greater and less than used previously. 17-α-estradiol at a threefold higher dose robustly extended both median and maximal lifespan, but still only in males. The male-specific extension of median lifespan by NDGA was replicated at the original dose, and using doses threefold lower and higher. The effects of NDGA were dose dependent and male specific but without an effect on maximal lifespan. Protandim, a mixture of botanical extracts that activate Nrf2, extended median lifespan in males only. Metformin alone, at a dose of 0.1% in the diet, did not significantly extend lifespan. Metformin (0.1%) combined with rapamycin (14 ppm) robustly extended lifespan, suggestive of an added benefit, based on historical comparison with earlier studies of rapamycin given alone. The α-glucosidase inhibitor, acarbose, at a concentration previously tested (1000 ppm), significantly increased median longevity in males and 90th percentile lifespan in both sexes, even when treatment was started at 16 months. Neither fish oil nor UDCA extended lifespan. These results underscore the reproducibility of ITP longevity studies and illustrate the importance of identifying optimal doses in lifespan studies.


Assuntos
Antioxidantes/farmacologia , Estradiol/farmacologia , Inibidores de Glicosídeo Hidrolases/farmacologia , Longevidade/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , alfa-Glucosidases/metabolismo , Acarbose/farmacologia , Animais , Medicamentos de Ervas Chinesas/farmacologia , Óleos de Peixe/farmacologia , Força da Mão , Masculino , Masoprocol/farmacologia , Metformina/farmacologia , Camundongos , Teste de Desempenho do Rota-Rod , Sirolimo/farmacologia , Análise de Sobrevida , Ácido Ursodesoxicólico/farmacologia
19.
Mech Ageing Dev ; 154: 1-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26839948

RESUMO

Genetic ablation of CuZn-superoxide dismutase (Sod1) in mice (Sod1(-/-) mice) leads to shortened lifespan with a dramatic increase in hepatocellular carcinoma and accelerated aging phenotypes, including early onset sarcopenia. To study the tissue specific effects of oxidative stress in the Sod1(-/-) mice, we generated mice that only express the human SOD1 gene specifically in the liver of Sod1(-/-) mice (Sod1(-/-)/hSOD1(alb) mice). Expression of hSOD1 in the liver of Sod1(-/-) mice improved liver function, reduced oxidative damage in liver, and partially restored the expression of several genes involved in tumorigenesis, which are abnormally expressed in the livers of the Sod1(-/-) mice. However, liver specific expression of hSOD1 did not prevent the loss of body weight and muscle mass and alterations in the structure of neuromuscular junctions. The expression of hSOD1 in the liver of Sod1(-/-) mice significantly improved the lifespan of Sod1(-/-) mice; however, the lifespan of the Sod1(-/-)/hSOD1(alb) mice was still significantly shorter than wild type mice.


Assuntos
Fígado/enzimologia , Longevidade , Superóxido Dismutase-1/biossíntese , Animais , Humanos , Camundongos , Camundongos Transgênicos , Especificidade de Órgãos , Superóxido Dismutase-1/genética
20.
Ann N Y Acad Sci ; 1363: 11-7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26695614

RESUMO

Although it is well documented that dietary restriction (DR) increases the life span of rodents and other animals, this increase is observed at relatively high levels of DR, in which rodents are typically fed 40% less than that consumed by rodents fed ad libitum. It is generally assumed that lower levels of DR will have a lesser impact on life span; however, there are very little published data on the effect of low levels of DR on life span. In this study, we show that 10% DR increased life span to almost the same extent as 40% DR. While both 10% and 40% DR resulted in similar changes in non-neoplastic lesions, 10% DR had no significant effect on the incidence of neoplasia (except for pituitary adenoma), and 40% DR resulted in a significant reduction (40%) in neoplasia. These data clearly demonstrate that the life span of F344 rats does not increase linearly with the level of DR; rather, even a low level of DR can substantially affect life span. This rodent study has important translational implications because it suggests that a modest reduction in calories might have significant health benefits for humans.


Assuntos
Restrição Calórica , Dieta , Expectativa de Vida , Animais , Peso Corporal , Causas de Morte , Masculino , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA