Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 122024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687678

RESUMO

Internalization from the cell membrane and endosomal trafficking of receptor tyrosine kinases (RTKs) are important regulators of signaling in normal cells that can frequently be disrupted in cancer. The adrenal tumor pheochromocytoma (PCC) can be caused by activating mutations of the rearranged during transfection (RET) receptor tyrosine kinase, or inactivation of TMEM127, a transmembrane tumor suppressor implicated in trafficking of endosomal cargos. However, the role of aberrant receptor trafficking in PCC is not well understood. Here, we show that loss of TMEM127 causes wildtype RET protein accumulation on the cell surface, where increased receptor density facilitates constitutive ligand-independent activity and downstream signaling, driving cell proliferation. Loss of TMEM127 altered normal cell membrane organization and recruitment and stabilization of membrane protein complexes, impaired assembly, and maturation of clathrin-coated pits, and reduced internalization and degradation of cell surface RET. In addition to RTKs, TMEM127 depletion also promoted surface accumulation of several other transmembrane proteins, suggesting it may cause global defects in surface protein activity and function. Together, our data identify TMEM127 as an important determinant of membrane organization including membrane protein diffusability and protein complex assembly and provide a novel paradigm for oncogenesis in PCC where altered membrane dynamics promotes cell surface accumulation and constitutive activity of growth factor receptors to drive aberrant signaling and promote transformation.


Assuntos
Membrana Celular , Proteínas de Membrana , Proteínas Proto-Oncogênicas c-ret , Proteínas Proto-Oncogênicas c-ret/metabolismo , Proteínas Proto-Oncogênicas c-ret/genética , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Membrana Celular/metabolismo , Transdução de Sinais , Transporte Proteico , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Proliferação de Células , Neoplasias das Glândulas Suprarrenais/genética , Neoplasias das Glândulas Suprarrenais/metabolismo , Neoplasias das Glândulas Suprarrenais/patologia
2.
bioRxiv ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37425958

RESUMO

Internalization from the cell membrane and endosomal trafficking of receptor tyrosine kinases (RTK) are important regulators of signaling in normal cells that can frequently be disrupted in cancer. The adrenal tumour pheochromocytoma (PCC) can be caused by activating mutations of the RET receptor tyrosine kinase, or inactivation of TMEM127, a transmembrane tumour suppressor implicated in trafficking of endosomal cargos. However, the role of aberrant receptor trafficking in PCC is not well understood. Here, we show that loss of TMEM127 causes wildtype RET protein accumulation on the cell surface, where increased receptor density facilitates constitutive ligand-independent activity and downstream signaling, driving cell proliferation. Loss of TMEM127 altered normal cell membrane organization and recruitment and stabilization of membrane protein complexes, impaired assembly, and maturation of clathrin coated pits, and reduced internalization and degradation of cell surface RET. In addition to RTKs, TMEM127 depletion also promoted surface accumulation of several other transmembrane proteins, suggesting it may cause global defects in surface protein activity and function. Together, our data identify TMEM127 as an important determinant of membrane organization including membrane protein diffusability, and protein complex assembly and provide a novel paradigm for oncogenesis in PCC where altered membrane dynamics promotes cell surface accumulation and constitutive activity of growth factor receptors to drive aberrant signaling and promote transformation.

3.
Mol Cancer Ther ; 20(4): 726-738, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33536189

RESUMO

The oncogenic transcription factor STAT3 is aberrantly activated in 70% of breast cancers, including nearly all triple-negative breast cancers (TNBCs). Because STAT3 is difficult to target directly, we considered whether metabolic changes driven by activated STAT3 could provide a therapeutic opportunity. We found that STAT3 prominently modulated several lipid classes, with most profound effects on N-acyl taurine and arachidonic acid, both of which are involved in plasma membrane remodeling. To exploit these metabolic changes therapeutically, we screened a library of layer-by-layer (LbL) nanoparticles (NPs) differing in the surface layer that modulates interactivity with the cell membrane. We found that poly-l-glutamic acid (PLE)-coated NPs bind to STAT3-transformed breast cancer cells with 50% greater efficiency than to nontransformed cells, and the heightened PLE-NP binding to TNBC cells was attenuated by STAT3 inhibition. This effect was also observed in densely packed three-dimensional breast cancer organoids. As STAT3-transformed cells show greater resistance to cytotoxic agents, we evaluated whether enhanced targeted delivery via PLE-NPs would provide a therapeutic advantage. We found that cisplatin-loaded PLE-NPs induced apoptosis of STAT3-driven cells at lower doses compared with both unencapsulated cisplatin and cisplatin-loaded nontargeted NPs. In addition, because radiation is commonly used in breast cancer treatment, and may alter cellular lipid distribution, we analyzed its effect on PLE-NP-cell binding. Irradiation of cells enhanced the STAT3-targeting properties of PLE-NPs in a dose-dependent manner, suggesting potential synergies between these therapeutic modalities. These findings suggest that cellular lipid changes driven by activated STAT3 may be exploited therapeutically using unique LbL NPs.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Ácido Glutâmico/uso terapêutico , Lipidômica/métodos , Nanopartículas/metabolismo , Fator de Transcrição STAT3/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Ácido Glutâmico/farmacologia , Humanos , Neoplasias de Mama Triplo Negativas/patologia
4.
Mol Biol Cell ; 23(19): 3838-50, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22875993

RESUMO

RET encodes a receptor tyrosine kinase that is essential for spermatogenesis, development of the sensory, sympathetic, parasympathetic, and enteric nervous systems and the kidneys, as well as for maintenance of adult midbrain dopaminergic neurons. RET is alternatively spliced to encode multiple isoforms that differ in their C-terminal amino acids. The RET9 and RET51 isoforms display unique levels of autophosphorylation and have differential interactions with adaptor proteins. They induce distinct gene expression patterns, promote different levels of cell differentiation and transformation, and play unique roles in development. Here we present a comprehensive study of the subcellular localization and trafficking of RET isoforms. We show that immature RET9 accumulates intracellularly in the Golgi, whereas RET51 is efficiently matured and present in relatively higher amounts on the plasma membrane. RET51 is internalized faster after ligand binding and undergoes recycling back to the plasma membrane. This differential trafficking of RET isoforms produces a more rapid and longer duration of signaling through the extracellular-signal regulated kinase/mitogen-activated protein kinase pathway downstream of RET51 relative to RET9. Together these differences in trafficking properties contribute to some of the functional differences previously observed between RET9 and RET51 and establish the important role of intracellular trafficking in modulating and maintaining RET signaling.


Assuntos
Processamento Alternativo , Proteínas Proto-Oncogênicas c-ret/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Técnicas de Cocultura , Endossomos/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/fisiologia , Complexo de Golgi/metabolismo , Humanos , Lisossomos/metabolismo , Sistema de Sinalização das MAP Quinases , Dados de Sequência Molecular , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Transporte Proteico , Proteólise , Proteínas Proto-Oncogênicas c-ret/genética , Ratos , Ratos Sprague-Dawley , Proteínas rab de Ligação ao GTP/metabolismo
5.
J Clin Endocrinol Metab ; 95(11): E342-6, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20702524

RESUMO

CONTEXT: The RET receptor tyrosine kinase is an important mediator of several human diseases, most notably of neuroendocrine cancers. These diseases are characterized by aberrant cell migration, a process tightly regulated by integrins. OBJECTIVE: Our goals were to investigate the role of integrins in RET-mediated migration in two neoplastic cell models: the neural-derived cell line SH-SY5Y, and the papillary thyroid carcinoma cell line TPC-1. We also evaluated whether multiple integrin subunits have a role in RET-mediated cell migration. DESIGN: We evaluated the expression and activation of integrins in response to RET activation using standard cell adhesion and migration (wound-healing) assays. We examined focal adhesion formation, using integrin-paxillin coimmunoprecipitations and immunofluorescence, as an indicator of integrin activity. RESULTS: Our data indicate that ß1 integrin (ITGB1) is expressed in both SH-SY5Y and TPC-1 cell lines and that these cells adhere strongly to matrices preferentially associated with ITGB1. We showed that RET can activate ITGB1, and that RET-induced cell adhesion and migration require ITGB1. Furthermore, we showed that ß3 integrin (ITGB3) also plays a role in RET-mediated cell adhesion and migration in vitro and ITGB3 expression correlates with RET-mediated invasion in a mouse tumor xenograft model, suggesting that RET mediates the activity of multiple integrin subunits. CONCLUSIONS: Our data are the first to show that multiple integrin subunits contribute to cell adhesion and migration downstream of RET, suggesting that coordinated signaling through these pathways is important for cell interactions with the microenvironment during tumor invasion and progression.


Assuntos
Adesão Celular/fisiologia , Movimento Celular/fisiologia , Integrinas/metabolismo , Subunidades Proteicas/metabolismo , Proteínas Proto-Oncogênicas c-ret/metabolismo , Animais , Linhagem Celular Tumoral , Imunofluorescência , Quinase 1 de Adesão Focal/metabolismo , Humanos , Imunoprecipitação , Camundongos , Microscopia Confocal , Paxilina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
J Fluoresc ; 20(1): 401-5, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19823924

RESUMO

Internalization and intracellular trafficking of membrane proteins are now recognized as essential mechanisms that contribute to a number of cellular processes. Current methods lack the ability to specifically label the plasma membrane of a live cell, follow internalization of labeled membrane molecules, and conclusively differentiate newly formed membrane-derived vesicles from pre-existing endocytic or secretory structures in the cytoplasm. Here, we detail a visualization method for surface biotinylation of plasma membrane-derived vesicles that allows us to follow their progress from membrane to cytosol at specific time points. Using the transmembrane receptor RET as a model, we demonstrate how this method can be applied to identify plasma membrane-derived vesicle maturation, determine RET's presence within these structures, and monitor RET's recycling to the cell surface. This method improves on static and less discriminatory methods, providing a tool for analysis of real-time vesicle trafficking that is applicable to many systems.


Assuntos
Membrana Celular/metabolismo , Vesículas Citoplasmáticas/metabolismo , Proteínas de Membrana/metabolismo , Imagem Molecular/métodos , Biotinilação , Citosol/metabolismo , Endocitose , Células HeLa , Humanos , Transporte Proteico , Proteínas Proto-Oncogênicas c-ret/metabolismo , Vesículas Secretórias/metabolismo , Coloração e Rotulagem
7.
Cancer Res ; 69(11): 4861-9, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19487296

RESUMO

Mutations to the RET proto-oncogene occur in as many as one in three cases of thyroid cancer and have been detected in both the medullary (MTC) and the papillary (PTC) forms of the disease. Of the nearly 400 chromosomal rearrangements resulting in oncogenic fusion proteins that have been identified to date, the rearrangements that give rise to RET fusion oncogenes in PTC remain the paradigm for chimeric oncoprotein involvement in solid tumors. RET-associated PTC tumors are phenotypically indolent and relatively less aggressive than RET-related MTCs. The mechanism(s) contributing to the differences in oncogenicity of RET-related MTC and PTC remains unexplained. Here, through cellular and molecular characterization of the two most common RET/PTC rearrangements (PTC1 and PTC3), we show that RET/PTC oncoproteins are highly oncogenic when overexpressed, with the ability to increase cell proliferation and transformation. Further, RET/PTCs activate similar downstream signaling cascades to wild-type RET, although at different levels, and are relatively more stable as they avoid lysosomal degradation. Absolute quantitation of transcript levels of RET, CCDC6, and NCOA4 (the 5' fusion genes involved in PTC1 and PTC3, respectively) suggest that these rearrangements result in lower RET expression in PTCs relative to MTCs. Together, our findings suggest PTC1 and PTC3 are highly oncogenic proteins when overexpressed, but result in indolent disease compared with RET-related MTCs due to their relatively low expression from the NCOA4 and CCDC6 promoters in vivo.


Assuntos
Carcinoma Medular/genética , Carcinoma Papilar/genética , Proteínas Proto-Oncogênicas c-ret/fisiologia , RNA Mensageiro/fisiologia , Neoplasias da Glândula Tireoide/genética , Carcinoma Medular/metabolismo , Carcinoma Medular/patologia , Carcinoma Papilar/metabolismo , Carcinoma Papilar/patologia , Membrana Celular/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Células Cultivadas , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/fisiologia , Células HeLa , Humanos , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/fisiologia , Coativadores de Receptor Nuclear , Proteínas Oncogênicas/metabolismo , Proteínas Oncogênicas/fisiologia , Fosforilação , Regiões Promotoras Genéticas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/fisiologia , Multimerização Proteica , Transporte Proteico , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-ret/genética , Proteínas Proto-Oncogênicas c-ret/metabolismo , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia
8.
Genes Chromosomes Cancer ; 48(5): 429-40, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19226610

RESUMO

The inherited cancer syndrome multiple endocrine neoplasia type 2 (MEN 2) is caused by mutations of the RET receptor tyrosine kinase and is characterized by medullary thyroid carcinoma. MEN 2 subtypes have distinct mutational spectrums and vary in severity. The most severe disease subtype, MEN 2B, is associated with a specific RET mutation (M918T) that has been predicted to alter downstream signaling and target gene expression patterns. We used gene expression microarray analysis to identify target genes modulated by RET. We compared two oncogenic RET mutants, associated with MEN 2A (2ARET) or MEN 2B (2BRET) disease subtypes, that are predicted to have distinct downstream target genes. We showed that overall, 2ARET and 2BRET modulated genes with similar functional ontologies. Further, when we validated our microarray data by quantitative real time PCR, we did not detect major differences in gene expression associated with these mutants when differences in receptor activity levels were considered. We did, however, detect differences in gene expression induced by two RET COOH-terminal isoforms, RET9 and RET51, irrespective of the RET form present (wildtype, 2ARET, or 2BRET). Our data suggest that similar transcriptional programs contribute to all forms of MEN 2 but that differences in target gene expression may contribute to developmental pattern differences observed between RET isoforms.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasia Endócrina Múltipla Tipo 2a/genética , Neoplasia Endócrina Múltipla Tipo 2b/genética , Proteínas Proto-Oncogênicas c-ret/genética , Humanos , Mutação , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-ret/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais , Neoplasias da Glândula Tireoide/genética
9.
Cancer Res ; 68(5): 1338-46, 2008 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-18316596

RESUMO

The RET receptor tyrosine kinase has essential roles in cell survival, differentiation, and proliferation. Oncogenic activation of RET causes the cancer syndrome multiple endocrine neoplasia type 2 (MEN 2) and is a frequent event in sporadic thyroid carcinomas. However, the molecular mechanisms underlying RET's potent transforming and mitogenic signals are still not clear. Here, we show that nuclear localization of beta-catenin is frequent in both thyroid tumors and their metastases from MEN 2 patients, suggesting a novel mechanism of RET-mediated function through the beta-catenin signaling pathway. We show that RET binds to, and tyrosine phosphorylates, beta-catenin and show that the interaction between RET and beta-catenin can be direct and independent of cytoplasmic kinases, such as SRC. As a result of RET-mediated tyrosine phosphorylation, beta-catenin escapes cytosolic down-regulation by the adenomatous polyposis coli/Axin/glycogen synthase kinase-3 complex and accumulates in the nucleus, where it can stimulate beta-catenin-specific transcriptional programs in a RET-dependent fashion. We show that down-regulation of beta-catenin activity decreases RET-mediated cell proliferation, colony formation, and tumor growth in nude mice. Together, our data show that a beta-catenin-RET kinase pathway is a critical contributor to the development and metastasis of human thyroid carcinoma.


Assuntos
Carcinoma/metabolismo , Transformação Celular Neoplásica , Regulação Neoplásica da Expressão Gênica , Proteínas Proto-Oncogênicas c-ret/metabolismo , Neoplasias da Glândula Tireoide/metabolismo , beta Catenina/metabolismo , Animais , Carcinoma/patologia , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Humanos , Camundongos , Camundongos Nus , Células NIH 3T3 , Transdução de Sinais , Neoplasias da Glândula Tireoide/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA