Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Cells ; 11(21)2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36359847

RESUMO

Elongated peptides (EPs), containing possibly one or multiple epitope/s, are increasingly used for the screening of antigen-specific CD8+ and CD4+ cell responses. Here, we present an in vitro protocol that allows the amplification of antigen-specific cells and the subsequent functional analysis of both T cell types using EPs. Known viral-derived epitopes were elongated to 20 mer EPs on the N-, C-, and both termini for HLA class I binders, or on the N- and C- termini for HLA class II binders. With EP stimulation only, the percentage of responding CD8+ T cells was dependent on the elongation site of the EP, whereas CD4+ T cell responses were completely lost in 22% of the tests performed ex vivo. A short-term amplification step plus the addition of a TLR3 agonist (Poly-ICLC) together with an increased EP concentration improved markedly the detection of CD8+ and CD4+ T cell reactivities.


Assuntos
Linfócitos T CD8-Positivos , Epitopos de Linfócito T , Linfócitos T CD4-Positivos , Peptídeos
2.
Cancer Res ; 82(22): 4288-4298, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36112781

RESUMO

T cell-engaging bispecific antibodies (TCB) are highly potent therapeutics that can recruit and activate cytotoxic T cells to stimulate an antitumor immune response. However, the development of TCBs against solid tumors has been limited by significant on-target toxicity to normal tissues. Probody therapeutics have been developed as a novel class of recombinant, protease-activated antibody prodrugs that are "masked" to reduce antigen binding in healthy tissues but can become conditionally unmasked by proteases that are preferentially active in the tumor microenvironment (TME). Here, we describe the preclinical efficacy and safety of CI107, a Probody TCB targeting EGFR and CD3. In vitro, the protease-activated, unmasked CI107 effectively bound EGFR and CD3 expressed on the surface of cells and induced T-cell activation, cytokine release, and cytotoxicity toward tumor cells. In contrast, dually masked CI107 displayed a >500-fold reduction in antigen binding and >15,000-fold reduction in cytotoxic activity. In vivo, CI107 potently induced dose-dependent tumor regression of established colon cancer xenografts in mice engrafted with human peripheral blood mononuclear cells. Furthermore, the MTD of CI107 in cynomolgus monkeys was more than 60-fold higher than that of the unmasked TCB, and much lower levels of toxicity were observed in animals receiving CI107. Therefore, by localizing activity to the TME and thus limiting toxicity to normal tissues, this Probody TCB demonstrates the potential to expand clinical opportunities for TCBs as effective anticancer therapies for solid tumor indications. SIGNIFICANCE: A conditionally active EGFR-CD3 T cell-engaging Probody therapeutic expands the safety window of bispecific antibodies while maintaining efficacy in preclinical solid tumor settings.


Assuntos
Anticorpos Biespecíficos , Complexo CD3 , Neoplasias do Colo , Receptores ErbB , Animais , Humanos , Camundongos , Anticorpos Biespecíficos/uso terapêutico , Complexo CD3/antagonistas & inibidores , Neoplasias do Colo/terapia , Receptores ErbB/antagonistas & inibidores , Leucócitos Mononucleares/metabolismo , Peptídeo Hidrolases/metabolismo , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Mol Cancer Ther ; 21(8): 1326-1336, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35666803

RESUMO

Probody therapeutics (Pb-Txs) are conditionally activated antibody-drug conjugates (ADCs) designed to remain inactive until proteolytically activated in the tumor microenvironment, enabling safer targeting of antigens expressed in both tumor and normal tissue. Previous attempts to target CD71, a highly expressed tumor antigen, have failed to establish an acceptable therapeutic window due to widespread normal tissue expression. This study evaluated whether a probody-drug conjugate targeting CD71 can demonstrate a favorable efficacy and tolerability profile in preclinical studies for the treatment of cancer. CX-2029, a Pb-Tx conjugated to maleimido-caproyl-valine-citrulline-p-aminobenzyloxycarbonyl-monomethyl auristatin E, was developed as a novel cancer therapeutic targeting CD71. Preclinical studies were performed to evaluate the efficacy and safety of this anti-CD71 PDC in patient-derived xenograft (PDX) mouse models and cynomolgus monkeys, respectively. CD71 expression was detected at high levels by IHC across a broad range of tumor and normal tissues. In vitro, the masked Pb-Tx form of the anti-CD71 PDC displayed a >50-fold reduced affinity for binding to CD71 on cells compared with protease-activated, unmasked anti-CD71 PDC. Potent in vivo tumor growth inhibition (stasis or regression) was observed in >80% of PDX models (28/34) at 3 or 6 mg/kg. Anti-CD71 PDC remained mostly masked (>80%) in circulation throughout dosing in cynomolgus monkeys at 2, 6, and 12 mg/kg and displayed a 10-fold improvement in tolerability compared with an anti-CD71 ADC, which was lethal. Preclinically, anti-CD71 PDC exhibits a highly efficacious and acceptable safety profile that demonstrates the utility of the Pb-Tx platform to target CD71, an otherwise undruggable target. These data support further clinical development of the anti-CD71 PDC CX-2029 as a novel cancer therapeutic.


Assuntos
Antineoplásicos , Imunoconjugados , Neoplasias , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Chumbo , Macaca fascicularis/metabolismo , Camundongos , Neoplasias/tratamento farmacológico , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
4.
PLoS One ; 17(4): e0266701, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35468147

RESUMO

OBJECTIVE: We investigated blood samples from fully SARS-CoV2-vaccinated subjects and from previously positive tested patients up to one year after infection with SARS-CoV2, and compared short- and long-term T cell and antibody responses, with a special focus on the recently emerged delta variant (B.1.617.2). METHODS AND RESULTS: In 23 vaccinated subjects, we documented high anti-SARS-CoV2 spike protein receptor binding domain (RBD) antibody titers. Average virus neutralization by antibodies, assessed as inhibition of ACE2 binding to RBD, was 2.2-fold reduced for delta mutant vs. wild type (wt) RBD. The mean specific antibody titers were lower one year after natural infection than after vaccination; ACE2 binding to delta mutant vs. wt RBD was 1.65-fold reduced. In an additional group, omicron RBD binding was reduced compared to delta. Specific CD4+ T cell responses were measured after stimulation with peptides pools from wt, alpha, beta, gamma, or delta variant SARS-CoV2 spike proteins by flow cytometric intracellular cytokine staining. There was no significant difference in cytokine production of IFN-γ, TNF-α, or IL-2 between vaccinated subjects. T cell responses to wt or mutant SARS-CoV2 spike were significantly weaker after natural occurring infections compared to those in vaccinated individuals. CONCLUSION: Antibody neutralisation of the delta mutant was reduced compared to wt, as assessed in a novel inhibition assay with a finger prick blood drop. Strong CD4 T cell responses were present against wt and mutant SARS-CoV2 variants, including the delta (B.1.617.2) strain, in fully vaccinated individuals, whereas they were partly weaker 1 year after natural infection. Hence, immune responses after vaccination are stronger compared to those after naturally occurring infection, pointing out the need of the vaccine to overcome the pandemic.


Assuntos
COVID-19 , Vacinas Virais , Enzima de Conversão de Angiotensina 2 , COVID-19/prevenção & controle , Citocinas , Humanos , RNA Viral , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Linfócitos T , Vacinação , Proteínas do Envelope Viral
5.
Front Immunol ; 12: 799910, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956237

RESUMO

The advancement of new immunotherapies necessitates appropriate probes to monitor the presence and distribution of distinct immune cell populations. Considering the key role of CD4+ cells in regulating immunological processes, we generated novel single-domain antibodies [nanobodies (Nbs)] that specifically recognize human CD4. After in-depth analysis of their binding properties, recognized epitopes, and effects on T-cell proliferation, activation, and cytokine release, we selected CD4-specific Nbs that did not interfere with crucial T-cell processes in vitro and converted them into immune tracers for noninvasive molecular imaging. By optical imaging, we demonstrated the ability of a high-affinity CD4-Nb to specifically visualize CD4+ cells in vivo using a xenograft model. Furthermore, quantitative high-resolution immune positron emission tomography (immunoPET)/MR of a human CD4 knock-in mouse model showed rapid accumulation of 64Cu-radiolabeled CD4-Nb1 in CD4+ T cell-rich tissues. We propose that the CD4-Nbs presented here could serve as versatile probes for stratifying patients and monitoring individual immune responses during personalized immunotherapy in both cancer and inflammatory diseases.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Imagem Molecular/métodos , Imagem Óptica/métodos , Anticorpos de Domínio Único , Animais , Xenoenxertos , Humanos , Camundongos
6.
Viruses ; 13(11)2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34835061

RESUMO

Tick-borne encephalitis virus (TBEV), a member of the Flaviviridae family, Flavivirus genus, is responsible for neurological symptoms that may cause permanent disability or death. With an incidence on the rise, it is the major arbovirus affecting humans in Central/Northern Europe and North-Eastern Asia. Neuronal death is a critical feature of TBEV infection, yet little is known about the type of death and the molecular mechanisms involved. In this study, we used a recently established pathological model of TBEV infection based on human neuronal/glial cells differentiated from fetal neural progenitors and transcriptomic approaches to tackle this question. We confirmed the occurrence of apoptotic death in these cultures and further showed that genes involved in pyroptotic death were up-regulated, suggesting that this type of death also occurs in TBEV-infected human brain cells. On the contrary, no up-regulation of major autophagic genes was found. Furthermore, we demonstrated an up-regulation of a cluster of genes belonging to the extrinsic apoptotic pathway and revealed the cellular types expressing them. Our results suggest that neuronal death occurs by multiple mechanisms in TBEV-infected human neuronal/glial cells, thus providing a first insight into the molecular pathways that may be involved in neuronal death when the human brain is infected by TBEV.


Assuntos
Apoptose , Vírus da Encefalite Transmitidos por Carrapatos/patogenicidade , Neuroglia/virologia , Neurônios/virologia , Piroptose , Apoptose/genética , Astrócitos/metabolismo , Humanos , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Piroptose/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/genética , Transcriptoma
7.
Cancer Immunol Res ; 9(12): 1451-1464, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34635485

RESUMO

Immune-checkpoint blockade has revolutionized cancer treatment. However, most patients do not respond to single-agent therapy. Combining checkpoint inhibitors with other immune-stimulating agents increases both efficacy and toxicity due to systemic T-cell activation. Protease-activatable antibody prodrugs, known as Probody therapeutics (Pb-Tx), localize antibody activity by attenuating capacity to bind antigen until protease activation in the tumor microenvironment. Herein, we show that systemic administration of anti-programmed cell death ligand 1 (anti-PD-L1) and anti-programmed cell death protein 1 (anti-PD-1) Pb-Tx to tumor-bearing mice elicited antitumor activity similar to that of traditional PD-1/PD-L1-targeted antibodies. Pb-Tx exhibited reduced systemic activity and an improved nonclinical safety profile, with markedly reduced target occupancy on peripheral T cells and reduced incidence of early-onset autoimmune diabetes in nonobese diabetic mice. Our results confirm that localized PD-1/PD-L1 inhibition by Pb-Tx can elicit robust antitumor immunity and minimize systemic immune-mediated toxicity. These data provide further preclinical rationale to support the ongoing development of the anti-PD-L1 Pb-Tx CX-072, which is currently in clinical trials.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antígeno B7-H1/uso terapêutico , Imunoterapia/métodos , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/farmacologia , Antígeno B7-H1/farmacologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Camundongos , Microambiente Tumoral
8.
Atmos Meas Tech ; 14(2): 975-981, 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-34122665

RESUMO

Aerial emission sampling of four natural gas boiler stack plumes was conducted using an unmanned aerial system (UAS) equipped with a lightweight sensor-sampling system (the "Kolibri") for measurement of nitrogen oxide (NO), and nitrogen dioxide (NO2), carbon dioxide (CO2), and carbon monoxide (CO). Flights (n=22) ranged from 11 to 24min in duration at two different sites. The UAS was maneuvered into the plumes with the aid of real-time CO2 telemetry to the ground operators and, at one location, a second UAS equipped with an infrared-visible camera. Concentrations were collected and recorded at 1Hz. The maximum CO2, CO, NO, and NO2 concentrations in the plume measured were 10000, 7, 27, and 1.5 ppm, respectively. Comparison of the NO x emissions between the stack continuous emission monitoring systems and the UAS-Kolibri for three boiler sets showed an average of 5.6% and 3.5% relative difference for the run-weighted and carbon-weighted average emissions, respectively. To our knowledge, this is the first evidence of the accuracy performance of UAS-based emission factors against a source of known strength.

9.
Parasit Vectors ; 14(1): 144, 2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33676573

RESUMO

BACKGROUND: Louping ill virus (LIV) and tick-borne encephalitis virus (TBEV) are tick-borne flaviviruses that are both transmitted by the major European tick, Ixodes ricinus. Despite the importance of I. ricinus as an arthropod vector, its capacity to acquire and subsequently transmit viruses, known as vector competence, is poorly understood. At the molecular scale, vector competence is governed in part by binary interactions established between viral and cellular proteins within infected tick cells. METHODS: To investigate virus-vector protein-protein interactions (PPIs), the entire set of open reading frames for LIV and TBEV was screened against an I. ricinus cDNA library established from three embryonic tick cell lines using yeast two-hybrid methodology (Y2H). PPIs revealed for each viral bait were retested in yeast by applying a gap repair (GR) strategy, and notably against the cognate protein of both viruses, to determine whether the PPIs were specific for a single virus or common to both. The interacting tick proteins were identified by automatic BLASTX, and in silico analyses were performed to expose the biological processes targeted by LIV and TBEV. RESULTS: For each virus, we identified 24 different PPIs involving six viral proteins and 22 unique tick proteins, with all PPIs being common to both viruses. According to our data, several viral proteins (pM, M, NS2A, NS4A, 2K and NS5) target multiple tick protein modules implicated in critical biological pathways. Of note, the NS5 and pM viral proteins establish PPI with several tumor necrosis factor (TNF) receptor-associated factor (TRAF) proteins, which are essential adaptor proteins at the nexus of multiple signal transduction pathways. CONCLUSION: We provide the first description of the TBEV/LIV-I. ricinus PPI network, and indeed of any PPI network involving a tick-borne virus and its tick vector. While further investigation will be needed to elucidate the role of each tick protein in the replication cycle of tick-borne flaviviruses, our study provides a foundation for understanding the vector competence of I. ricinus at the molecular level. Indeed, certain PPIs may represent molecular determinants of vector competence of I. ricinus for TBEV and LIV, and potentially for other tick-borne flaviviruses.


Assuntos
Proteínas de Artrópodes/metabolismo , Vírus da Encefalite Transmitidos por Carrapatos/genética , Vírus da Encefalite Transmitidos por Carrapatos/fisiologia , Interações entre Hospedeiro e Microrganismos , Ixodes/genética , Ixodes/virologia , Proteínas Virais/metabolismo , Animais , Proteínas de Artrópodes/genética , Feminino , Biblioteca Gênica , Fases de Leitura Aberta , Domínios e Motivos de Interação entre Proteínas , Proteínas Virais/genética
10.
Cancers (Basel) ; 13(4)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546283

RESUMO

Cancer immunotherapy activates the immune system to specifically target malignant cells. Research has often focused on CD8+ cytotoxic T cells, as those have the capacity to eliminate tumor cells after specific recognition upon TCR-MHC class I interaction. However, CD4+ T cells have gained attention in the field, as they are not only essential to promote help to CD8+ T cells, but are also able to kill tumor cells directly (via MHC-class II dependent recognition) or indirectly (e.g., via the activation of other immune cells like macrophages). Therefore, immunotherapy approaches have shifted from only stimulating CD8+ T cells to targeting and assessing both, CD4+ and CD8+ T cell subsets. Here, we discuss the various subsets of CD4+ T cells, their plasticity and functionality, their relevance in the antitumor immune response in patients affected by cancer, and their ever-growing role in therapeutic approaches for human cancer.

11.
Clin Pharmacol Ther ; 109(2): 383-393, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32681519

RESUMO

CX-072 is an anti-PD-L1 (programmed death ligand 1) Probody therapeutic (Pb-Tx) designed to be preferentially activated by proteases in the tumor microenvironment and not in healthy tissue. Here, we report the model-informed drug development of CX-072. A quantitative systems pharmacology (QSP) model that captured known mechanisms of Pb-Tx activation, biodistribution, elimination, and target engagement was used to inform clinical translation. The QSP model predicted that a trough level of masked CX-072 (intact CX-072) of 13-99 nM would correspond to a targeted, 95% receptor occupancy in the tumor. The QSP model predictions appeared consistent with preliminary human single-dose pharmacokinetic (PK) data following CX-072 0.03-30.0 mg/kg as monotherapy: CX-072 circulated predominantly as intact CX-072 with minimal evidence of target-mediated drug disposition. A preliminary population PK (POPPK) analysis based upon 130 subjects receiving 0.03-30.0 mg/kg as monotherapy included a provision for a putative time-dependent and dose-dependent antidrug antibody (ADA) effect on clearance (CL) with a mixture model. Preliminary POPPK estimates for intact CX-072 time-invariant CL and volume of distribution were 0.306 L/day and 4.84 L, respectively. Exposure-response analyses did not identify statistically significant relationships with best change from baseline sum of measurements and either adverse events of grade ≥ 3 or of special interest. Simulations suggested that > 95% of patients receiving CX-072 10 mg/kg every two weeks would exceed the targeted trough level regardless of ADA, and that dose adjustment by body weight was not necessary, supporting a fixed 800 mg dose for evaluation in phase II.


Assuntos
Anticorpos Monoclonais/farmacocinética , Anticorpos Monoclonais/uso terapêutico , Antígeno B7-H1/metabolismo , Relação Dose-Resposta a Droga , Desenvolvimento de Medicamentos/métodos , Humanos , Masculino , Modelos Biológicos , Distribuição Tecidual/fisiologia , Microambiente Tumoral/efeitos dos fármacos
12.
J Immunother Cancer ; 8(2)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33184050

RESUMO

BACKGROUND: Peptide-based vaccination is a rational option for immunotherapy of prostate cancer. In this first-in-man phase I/II study, we assessed the safety, tolerability and immunological impact of a synthetic long peptide vaccine targeting Ras homolog gene family member C (RhoC) in patients with prostate cancer. RhoC is a small GTPase overexpressed in advanced solid cancers, metastases and cancer stem cells. METHODS: Twenty-two patients who had previously undergone radical prostatectomy received subcutaneous injections of 0.1 mg of a single RhoC-derived 20mer peptide emulsified in Montanide ISA-51 every 2 weeks for the first six times, then five times every 4 weeks for a total treatment time of 30 weeks. The drug safety and vaccine-specific immune responses were assessed during treatment and thereafter within a 13-month follow-up period. Serum level of prostate-specific antigen was measured up to 26 months postvaccination. RESULTS: Most patients (18 of 21 evaluable) developed a strong CD4 T cell response against the vaccine, which lasted at least 10 months following the last vaccination. Three promiscuouslypresented HLA-class II epitopes were identified. Vaccine-specific CD4 T cells were polyfunctional and effector memory T cells that stably expressed PD-1 (CD279) and OX-40 (CD134), but not LAG-3 (CD223). One CD8 T cell response was detected in addition. The vaccine was well tolerated and no treatment-related adverse events of grade ≥3 were observed. CONCLUSION: Targeting of RhoC induced a potent and long-lasting T cell immunity in the majority of the patients. The study demonstrates an excellent safety and tolerability profile. Vaccination against RhoC could potentially delay or prevent tumor recurrence and metastasis formation. TRIAL REGISTRATION NUMBER: NCT03199872.


Assuntos
Vacinas Anticâncer/uso terapêutico , Neoplasias da Próstata/terapia , Proteína de Ligação a GTP rhoC/metabolismo , Idoso , Vacinas Anticâncer/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias da Próstata/patologia
13.
Front Immunol ; 9: 2603, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30555457

RESUMO

Staphylococcus aureus (Sa), as one of the major human pathogens, has very effective strategies to subvert the human immune system. Virulence of the emerging community-associated methicillin-resistant Sa (CA-MRSA) depends on the secretion of phenol-soluble modulin (PSM) peptide toxins e.g., by binding to and modulation of innate immune cells. Previously, by using mouse bone marrow-derived dendritic cells we demonstrated that PSMs in combination with various Toll-like receptor (TLR) ligands induce a tolerogenic DC phenotype (tDC) characterized by the production of IL-10 and impaired secretion of pro-inflammatory cytokines. Consequently, PSM-induced tDCs favored priming of CD4+CD25+FoxP3+ Tregs with suppressor function while impairing the Th1 response. However, the relevance of these findings for the human system remained elusive. Here, we analyzed the impact of PSMα3 on the maturation, cytokine production, antigen uptake, and T cell stimulatory capacity of human monocyte-derived DCs (moDCs) treated simultaneously with either LPS (TLR4 ligand) or Sa cell lysate (TLR2 ligand). Herein, we demonstrate that PSMs indeed modulate human moDCs upon treatment with TLR2/4 ligands via multiple mechanisms, such as transient pore formation, impaired DC maturation, inhibited pro- and anti-inflammatory cytokine secretion, as well as reduced antigen uptake. As a result, the adaptive immune response was altered shown by an increased differentiation of naïve and even CD4+ T cells from patients with Th1/Th17-induced diseases (spondyloarthritis and rheumatoid arthritis) into CD4+CD127-CD25hiCD45RA-FoxP3hi regulatory T cells (Tregs) with suppressor function. This Treg induction was mediated most predominantly by direct DC-T-cell interaction. Thus, PSMs from highly virulent Sa strains affect DC functions not only in the mouse, but also in the human system, thereby modulating the adaptive immune response and probably increasing the tolerance toward the bacteria. Moreover, PSMα3 might be a novel peptide for tolerogenic DC induction that may be used for DC vaccination strategies.


Assuntos
Células Dendríticas/imunologia , Monócitos/imunologia , Peptídeos/imunologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Linfócitos T Reguladores/imunologia , Toxinas Bacterianas/imunologia , Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular/imunologia , Citocinas/imunologia , Humanos , Tolerância Imunológica/imunologia , Ativação Linfocitária/imunologia , Receptores Toll-Like/imunologia
14.
Antiviral Res ; 156: 1-9, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29842914

RESUMO

BACKGROUND: Human Adenovirus (HAdV) are responsible for severe infections in hematopoietic stem cells transplant (HSCT) recipient, species C viruses being the most commonly observed in this population. There is no approved antiviral treatment yet. Cidofovir (CDV), a cytidine analog, is the most frequently used and its lipophilic conjugate, brincidofovir (BCV), is under clinical development. These drugs target the viral DNA polymerase (DNA pol). Little is known about the natural polymorphism of HAdV DNA pol in clinical strains. METHODS: We assessed the inter- and intra-species variability of the whole gene coding for HAdV DNA pol of HAdV clinical strains of species C. The study included 60 species C HAdV (21 C1, 27 C2 and 12 C5) strains isolated from patients with symptomatic infections who had never experienced CDV or BCV treatments and 20 reference strains. We also evaluated the emergence of mutations in thrirteen patients with persistent HAdV infection despite antiviral treatment. RESULTS: We identified 356 polymorphic nucleotide positions (9.9% of the whole gene), including 102 positions with nonsynonymous mutations (28.0%) representing 8.7% of all amino acids. The mean numbers of nucleotide and amino acid mutations per strain were 23.1 (±6.2) and 5.2 (±2.4) respectively. Most of amino acid substitutions (60.6%) were observed in one instance only. A minority (13.8%) were observed in more than 10% of all strains. The most variable region was the NH2 terminal domain (44.2% of amino acid mutations). Mutations in the exonuclease domain accounted for 27.8%. The binding domains for the terminal protein (TPR), TPR1 and TPR2, presented a limited number of mutations, which were nonetheless frequently observed (62.5% and 58.8% of strains for TPR1 and TPR2, respectively). None of the mutations associated with CDV or BCV resistance were detected. In patients receieving antiviral drugs with persistent HAdV replication, we identified a new mutation in the NH2 terminal region. CONCLUSIONS: Our study shows a high diversity in HAdV DNA pol sequences in clinical species C HAdV and provides a comprehensive mapping of its natural polymorphism. These data will contribute to the interpretation of HAdV DNA pol mutations selected in patients receiving antiviral treatments.


Assuntos
Adenovírus Humanos/enzimologia , DNA Polimerase Dirigida por DNA/classificação , DNA Polimerase Dirigida por DNA/genética , Variação Genética , Infecções por Adenovirus Humanos/virologia , Adenovírus Humanos/classificação , Adenovírus Humanos/genética , Adenovírus Humanos/isolamento & purificação , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Fezes/virologia , Feminino , Genótipo , Células-Tronco Hematopoéticas , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Sistema Respiratório/virologia , Adulto Jovem
15.
Artigo em Inglês | MEDLINE | ID: mdl-29423380

RESUMO

To define the bottlenecks that restrict antigen expression after oral administration of viral-vectored vaccines, we tracked vectors derived from the human adenovirus type 5 at whole body, tissue, and cellular scales throughout the digestive tract in a murine model of oral delivery. After intragastric administration of vectors encoding firefly luciferase or a model antigen, detectable levels of transgene-encoded protein or mRNA were confined to the intestine, and restricted to delimited anatomical zones. Expression of luciferase in the form of multiple small bioluminescent foci in the distal ileum, cecum, and proximal colon suggested multiple crossing points. Many foci were unassociated with visible Peyer's patches, implying that transduced cells lay in proximity to villous rather than follicle-associated epithelium, as supported by detection of transgene-encoded antigen in villous epithelial cells. Transgene-encoded mRNA but not protein was readily detected in Peyer's patches, suggesting that post-transcriptional regulation of viral gene expression might limit expression of transgene-encoded antigen in this tissue. To characterize the pathways by which the vector crossed the intestinal epithelium and encountered sentinel cells, a fluorescent-labeled vector was administered to mice by the intragastric route or inoculated into ligated intestinal loops comprising a Peyer's patch. The vector adhered selectively to microfold cells in the follicle-associated epithelium, and, after translocation to the subepithelial dome region, was captured by phagocytes that expressed CD11c and lysozyme. In conclusion, although a large number of crossing events took place throughout the intestine within and without Peyer's patches, multiple firewalls prevented systemic dissemination of vector and suppressed production of transgene-encoded protein in Peyer's patches.


Assuntos
Adenovírus Humanos/genética , Adenovírus Humanos/imunologia , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Transgenes/genética , Transgenes/imunologia , Administração Oral , Animais , Feminino , Expressão Gênica , Genes Reporter , Vetores Genéticos/administração & dosagem , Humanos , Imunização , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Camundongos , Especificidade de Órgãos , Nódulos Linfáticos Agregados/imunologia , Nódulos Linfáticos Agregados/metabolismo , Fagócitos/metabolismo , Transporte Proteico , Vacinação
16.
J Immunol ; 196(3): 1284-92, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26729806

RESUMO

The challenging human pathogen Staphylococcus aureus has highly efficient immune evasion strategies for causing a wide range of diseases, from skin and soft tissue to life-threatening infections. Phenol-soluble modulin (PSM) peptides are major pathogenicity factors of community-associated methicillin-resistant S. aureus strains. In previous work, we demonstrated that PSMs in combination with TLR2 ligand from S. aureus induce tolerogenic dendritic cells (DCs) characterized by the production of high amounts of IL-10, but no proinflammatory cytokines. This in turn promotes the activation of regulatory T cells while impairing Th1 response; however, the signaling pathways modulated by PSMs remain elusive. In this study, we analyzed the effects of PSMs on signaling pathway modulation downstream of TLR2. TLR2 stimulation in combination with PSMα3 led to increased and prolonged phosphorylation of NF-κB, ERK, p38, and CREB in mouse bone marrow-derived DCs compared with single TLR2 activation. Furthermore, inhibition of p38 and downstream MSK1 prevented IL-10 production, which in turn reduced the capacity of DCs to activate regulatory T cells. Interestingly, the modulation of the signaling pathways by PSMs was independent of the known receptor for PSMs, as shown by experiments with DCs lacking the formyl peptide receptor 2. Instead, PSMs penetrate the cell membrane most likely by transient pore formation. Moreover, colocalization of PSMs and p38 was observed near the plasma membrane in the cytosol, indicating a direct interaction. Thus, PSMs from S. aureus directly modulate the signaling pathway p38-CREB in DCs, thereby impairing cytokine production and in consequence T cell priming to increase the tolerance toward the pathogen.


Assuntos
Toxinas Bacterianas/imunologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/imunologia , Células Dendríticas/imunologia , Sistema de Sinalização das MAP Quinases/imunologia , Infecções Estafilocócicas/imunologia , Linfócitos T/imunologia , Animais , Citocinas/biossíntese , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Evasão da Resposta Imune/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/imunologia , Staphylococcus aureus/imunologia
17.
PLoS Pathog ; 11(4): e1004859, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25923687

RESUMO

It is well established that persistent viral infection may impair cellular function of specialized cells without overt damage. This concept, when applied to neurotropic viruses, may help to understand certain neurologic and neuropsychiatric diseases. Borna disease virus (BDV) is an excellent example of a persistent virus that targets the brain, impairs neural functions without cell lysis, and ultimately results in neurobehavioral disturbances. Recently, we have shown that BDV infects human neural progenitor cells (hNPCs) and impairs neurogenesis, revealing a new mechanism by which BDV may interfere with brain function. Here, we sought to identify the viral proteins and molecular pathways that are involved. Using lentiviral vectors for expression of the bdv-p and bdv-x viral genes, we demonstrate that the phosphoprotein P, but not the X protein, diminishes human neurogenesis and, more particularly, GABAergic neurogenesis. We further reveal a decrease in pro-neuronal factors known to be involved in neuronal differentiation (ApoE, Noggin, TH and Scg10/Stathmin2), demonstrating that cellular dysfunction is associated with impairment of specific components of the molecular program that controls neurogenesis. Our findings thus provide the first evidence that a viral protein impairs GABAergic human neurogenesis, a process that is dysregulated in several neuropsychiatric disorders. They improve our understanding of the mechanisms by which a persistent virus may interfere with brain development and function in the adult.


Assuntos
Vírus da Doença de Borna/fisiologia , Regulação para Baixo , Neurônios GABAérgicos/metabolismo , Interações Hospedeiro-Patógeno , Neurogênese , Fosfoproteínas/metabolismo , Proteínas Estruturais Virais/metabolismo , Transporte Ativo do Núcleo Celular , Apolipoproteínas E/antagonistas & inibidores , Apolipoproteínas E/metabolismo , Biomarcadores/química , Biomarcadores/metabolismo , Doença de Borna/metabolismo , Doença de Borna/patologia , Doença de Borna/virologia , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/metabolismo , Proliferação de Células , Células Cultivadas , França , Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/patologia , Neurônios GABAérgicos/virologia , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/patologia , Células-Tronco Embrionárias Humanas/virologia , Humanos , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Fosfoproteínas/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/toxicidade , Estatmina , Tirosina 3-Mono-Oxigenase/antagonistas & inibidores , Tirosina 3-Mono-Oxigenase/metabolismo , Proteínas Estruturais Virais/genética
18.
Vaccine ; 33(1): 141-8, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25444801

RESUMO

Contagious bovine pleuropneumonia (CBPP), caused by Mycoplasma mycoides subsp. mycoides small colony type (MmmSC), is a devastating respiratory disease of cattle. In sub-Saharan Africa, where CBPP is enzootic, live attenuated vaccines are deployed but afford only short-lived protection. In cattle, recovery from experimental MmmSC infection has been associated with the presence of CD4(+) T lymphocytes that secrete interferon gamma in response to MmmSC, and in particular to the lipoprotein A (LppA) antigen. In an effort to develop a better vaccine against CBPP, a viral vector (Ad5-LppA) that expressed LppA was generated from human adenovirus type 5. The LppA-specific immune responses elicited by the Ad5-LppA vector were evaluated in mice, and compared to those elicited by recombinant LppA formulated with a potent adjuvant. Notably, a single administration of Ad5-LppA, but not recombinant protein, sufficed to elicit a robust LppA-specific humoral response. After a booster administration, both vector and recombinant protein elicited strong LppA-specific humoral and cell-mediated responses. Ex vivo stimulation of splenocytes induced extensive proliferation of CD4(+) T cells for mice immunized with vector or protein, and secretion of T helper 1-associated and proinflammatory cytokines for mice immunized with Ad5-LppA. Our study - by demonstrating the potential of a viral-vectored prototypic vaccine to elicit prompt and robust immune responses against a major antigen of MmmSC - represents a first step in developing a recombinant vaccine against CBPP.


Assuntos
Adenovírus Humanos/genética , Vacinas Bacterianas/imunologia , Portadores de Fármacos , Vetores Genéticos , Lipoproteína(a)/imunologia , Mycoplasma mycoides/imunologia , Pleuropneumonia Contagiosa/prevenção & controle , Animais , Anticorpos Antibacterianos/sangue , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/genética , Linfócitos T CD4-Positivos/imunologia , Proliferação de Células , Citocinas/metabolismo , Feminino , Humanos , Lipoproteína(a)/biossíntese , Lipoproteína(a)/genética , Camundongos Endogâmicos BALB C , Mycoplasma mycoides/genética
19.
PLoS One ; 9(11): e111605, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25364822

RESUMO

Bluetongue virus (BTV) is an economically important Orbivirus transmitted by biting midges to domestic and wild ruminants. The need for new vaccines has been highlighted by the occurrence of repeated outbreaks caused by different BTV serotypes since 1998. The major group-reactive antigen of BTV, VP7, is conserved in the 26 serotypes described so far, and its role in the induction of protective immunity has been proposed. Viral-based vectors as antigen delivery systems display considerable promise as veterinary vaccine candidates. In this paper we have evaluated the capacity of the BTV-2 serotype VP7 core protein expressed by either a non-replicative canine adenovirus type 2 (Cav-VP7 R0) or a leporipoxvirus (SG33-VP7), to induce immune responses in sheep. Humoral responses were elicited against VP7 in almost all animals that received the recombinant vectors. Both Cav-VP7 R0 and SG33-VP7 stimulated an antigen-specific CD4+ response and Cav-VP7 R0 stimulated substantial proliferation of antigen-specific CD8+ lymphocytes. Encouraged by the results obtained with the Cav-VP7 R0 vaccine vector, immunized animals were challenged with either the homologous BTV-2 or the heterologous BTV-8 serotype and viral burden in plasma was followed by real-time RT-PCR. The immune responses triggered by Cav-VP7 R0 were insufficient to afford protective immunity against BTV infection, despite partial protection obtained against homologous challenge. This work underscores the need to further characterize the role of BTV proteins in cross-protective immunity.


Assuntos
Antígenos Virais/genética , Vírus Bluetongue/genética , Bluetongue/imunologia , Expressão Gênica , Vetores Genéticos/genética , Proteínas do Core Viral/genética , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Bluetongue/prevenção & controle , Bluetongue/virologia , Vírus Bluetongue/imunologia , Linhagem Celular , Cricetinae , Reações Cruzadas/imunologia , Cães , Feminino , Imunidade Celular , Imunização , Masculino , Coelhos , Ovinos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Proteínas do Core Viral/imunologia , Vacinas Virais/genética , Vacinas Virais/imunologia
20.
J Invest Dermatol ; 134(1): 133-140, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23831555

RESUMO

The microphthalmia-associated transcription factor (MITF) is the "master melanocyte transcription factor" with a complex role in melanoma. MITF protein levels vary between and within clinical specimens, and amplifications and gain- and loss-of-function mutations have been identified in melanoma. How MITF functions in melanoma development and the effects of targeting MITF in vivo are unknown because MITF levels have not been directly tested in a genetic animal model. Here, we use a temperature-sensitive mitf zebrafish mutant to conditionally control endogenous MITF activity. We show that low levels of endogenous MITF activity are oncogenic with BRAF(V600E) to promote melanoma that reflects the pathology of the human disease. Remarkably, abrogating MITF activity in BRAF(V600E)mitf melanoma leads to dramatic tumor regression marked by melanophage infiltration and increased apoptosis. These studies are significant because they show that targeting MITF activity is a potent antitumor mechanism, but also show that caution is required because low levels of wild-type MITF activity are oncogenic.


Assuntos
Melanoma/metabolismo , Melanoma/patologia , Fator de Transcrição Associado à Microftalmia/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Proteínas de Peixe-Zebra/genética , Animais , Apoptose/fisiologia , Modelos Animais de Doenças , Genótipo , Humanos , Melanócitos/metabolismo , Melanócitos/patologia , Melanoma/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Mutação Puntual , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Transdução de Sinais/fisiologia , Neoplasias Cutâneas/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA