Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Blood ; 143(7): 582-591, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37971194

RESUMO

ABSTRACT: Concurrent Bruton tyrosine kinase and BCL2 inhibition has not yet been investigated in Waldenström macroglobulinemia (WM). We performed an investigator-initiated trial of ibrutinib and venetoclax in symptomatic treatment-naïve patients with MYD88-mutated WM. Patients received ibrutinib 420 mg once daily (cycle 1), followed by a ramp-up of venetoclax to 400 mg daily (cycle 2). The combination was then administered for 22 additional 4-week cycles. The attainment of very good partial response (VGPR) was the primary end point. Forty-five patients were enrolled in this study. The median baseline characteristics were as follows: age 67 years, serum IgM 43 g/L, and hemoglobin 102 g/L. Seventeen patients (38%) carried CXCR4 mutations. Nineteen patients (42%) achieved VGPR. Grade 3 or higher adverse events included neutropenia (38%), mucositis (9%), and tumor lysis syndrome (7%). Atrial fibrillation occurred in 3 (9%), and ventricular arrhythmia in 4 (9%) patients that included 2 grade 5 events. With a median follow-up of 24.4 months, the 24-month progression-free survival (PFS) and overall survival (OS) rates were 76% and 96%, respectively, and were not impacted by CXCR4 mutations. The median time on therapy was 10.2 months, and the median time after the end of therapy (EOT) was 13.3 months. Eleven of the 12 progression events occurred after EOT, and the 12-month PFS rates after EOT were 79%; 93% if VGPR was attained, and 69% for other patients (P = .12). Ibrutinib and venetoclax induced high VGPR rates and durable responses after EOT, although they were associated with a higher-than-expected rate of ventricular arrhythmia in patients with WM, leading to early study treatment termination. This trial was registered at www.clinicaltrials.gov as #NCT04273139.


Assuntos
Adenina/análogos & derivados , Compostos Bicíclicos Heterocíclicos com Pontes , Sulfonamidas , Macroglobulinemia de Waldenstrom , Humanos , Idoso , Macroglobulinemia de Waldenstrom/tratamento farmacológico , Macroglobulinemia de Waldenstrom/genética , Piperidinas , Arritmias Cardíacas
3.
Sci Rep ; 12(1): 1186, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35075163

RESUMO

Cancer biomarker discovery is critically dependent on the integrity of biofluid and tissue samples acquired from study participants. Multi-omic profiling of candidate protein, lipid, and metabolite biomarkers is confounded by timing and fasting status of sample collection, participant demographics and treatment exposures of the study population. Contamination by hemoglobin, whether caused by hemolysis during sample preparation or underlying red cell fragility, contributes 0-10 g/L of extraneous protein to plasma, serum, and Buffy coat samples and may interfere with biomarker detection and validation. We analyzed 617 plasma, 701 serum, and 657 buffy coat samples from a 7-year longitudinal multi-omic biomarker discovery program evaluating 400+ participants with or at risk for pancreatic cancer, known as Project Survival. Hemolysis was undetectable in 93.1% of plasma and 95.0% of serum samples, whereas only 37.1% of buffy coat samples were free of contamination by hemoglobin. Regression analysis of multi-omic data demonstrated a statistically significant correlation between hemoglobin concentration and the resulting pattern of analyte detection and concentration. Although hemolysis had the greatest impact on identification and quantitation of the proteome, distinct differentials in metabolomics and lipidomics were also observed and correlated with severity. We conclude that quality control is vital to accurate detection of informative molecular differentials using OMIC technologies and that caution must be exercised to minimize the impact of hemolysis as a factor driving false discovery in large cancer biomarker studies.


Assuntos
Biomarcadores/sangue , Hemólise , Lipidômica/normas , Neoplasias Pancreáticas/sangue , Pancreatite/sangue , Proteômica/normas , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Espectrometria de Massas , Medicina de Precisão
4.
Nat Commun ; 10(1): 3414, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31363087

RESUMO

Despite the vast number of modification sites mapped within mRNAs, known examples of consequential mRNA modifications remain rare. Here, we provide multiple lines of evidence to show that Ime4p, an N6-methyladenosine (m6A) methyltransferase required for meiosis in yeast, acts by methylating a site in the 3' UTR of the mRNA encoding Rme1p, a transcriptional repressor of meiosis. Consistent with this mechanism, genetic analyses reveal that IME4 functions upstream of RME1. Transcriptome-wide, RME1 is the primary message that displays both increased methylation and reduced expression in an Ime4p-dependent manner. In yeast strains for which IME4 is dispensable for meiosis, a natural polymorphism in the RME1 promoter reduces RME1 transcription, obviating the requirement for methylation. Mutation of a single m6A site in the RME1 3' UTR increases Rme1p repressor production and reduces meiotic efficiency. These results reveal the molecular and physiological consequences of a modification in the 3' UTR of an mRNA.


Assuntos
Regiões 3' não Traduzidas , Adenosina/análogos & derivados , RNA Mensageiro/genética , Proteínas Repressoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Adenosina/metabolismo , Regulação Fúngica da Expressão Gênica , Meiose , Metilação , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Atherosclerosis ; 241(2): 400-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26074314

RESUMO

OBJECTIVE: Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have beneficial effects on inflammation and cardiovascular disease (CVD). Our aim was to assess the effect of a six-week supplementation with either olive oil, EPA, or DHA on gene expression in peripheral blood mononuclear cells (PBMC). METHODS: Subjects were sampled at baseline and six weeks after receiving either: olive oil 6.0 g/day (n = 16), EPA 1.8 g/day (n = 16), or DHA 1.8 g/day (n = 18). PBMC were subjected to gene expression analysis by microarray with key findings confirmed by quantitative real-time polymerase chain reaction (Q-PCR). RESULTS: Plasma phospholipid EPA increased 3 fold in the EPA group, and DHA increased 63% in the DHA group (both p < 0.01), while no effects were observed in the olive oil group. Microarray analysis indicated that EPA but not DHA or olive oil significantly affected the gene expression in the following pathways: 1) interferon signaling, 2) receptor recognition of bacteria and viruses, 3) G protein signaling, glycolysis and glycolytic shunting, 4) S-adenosyl-l-methionine biosynthesis, and 5) cAMP-mediated signaling including cAMP responsive element protein 1 (CREB1), as well as many other individual genes including hypoxia inducible factor 1, α subunit (HIF1A). The findings for CREB1 and HIF1A were confirmed by Q-PCR analysis. CONCLUSIONS: Our data indicate that EPA supplementation was associated with significant effects on gene expression involving the interferon pathway as well as down-regulation of CREB1 and HIF1A, which may relate to its beneficial effect on CVD risk reduction.


Assuntos
Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácido Eicosapentaenoico/administração & dosagem , Leucócitos Mononucleares/efeitos dos fármacos , 1-Alquil-2-acetilglicerofosfocolina Esterase/sangue , Administração Oral , Adulto , Biomarcadores/sangue , Boston , Ácidos Docosa-Hexaenoicos/sangue , Método Duplo-Cego , Ácido Eicosapentaenoico/sangue , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Azeite de Oliva/administração & dosagem , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Tempo , Regulação para Cima
6.
ACS Appl Mater Interfaces ; 7(16): 8606-14, 2015 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-25850567

RESUMO

Biomimetic polymer nanofibers integrate sensing capabilities creating utility across many biological and biomedical applications. We created fibers consisting of either a poly(ether sulfone) (PES) or a polysulfone (PSU) core coated by a biocompatible polycaprolactone (PCL) shell to facilitate cell attachment. Oxygen sensitive luminescent probes Pt(II) meso-tetra(pentafluorophenyl)porphine (PtTFPP) or Pd(II) meso-tetra(pentafluorophenyl)porphine (PdTFPP), were incorporated in the core via single-step coaxial electrospinning providing superior sensitivity, high brightness, linear response, and excellent stability. Both PES-PCL and PSU-PCL fibers provide more uniform probe distribution than polydimethylsiloxane (PDMS). PSU-based sensing fibers possessed optimum sensitivity due to their relatively higher oxygen permeability. During exposure to 100% nitrogen and 100% oxygen, PES-PCL fiber displayed an I0/I100 value of 6.7; PSU-PCL exhibited a value of 8.9 with PtTFPP as the indicator. In contrast, PdTFPP-containing fibers possess higher sensitivity due to the long porphyrin lifetime. The corresponding I0/I100 values were 80.6 and 106.7 for the PES-PCL and PSU-PCL matrices, respectively. The response and recovery times were 0.24/0.39 s for PES-PCL and 0.38/0.83 s for PSU-PCL which are 0.12 and 0.11 s faster, respectively, than the Pt-based porphyrin in the same matrices. Paradoxically, lower oxygen permeabilities make these polymers better suited to measuring higher (i. e., ∼20%) oxygen contents than PDMS. Individual fiber sensing was studied by fluorescence spectrometry and at a sub-micrometer scale by total internal reflection fluorescence (TIRF). Specific polymer blends relate polymer composition to the resulting sensor properties. All compositions displayed linear Stern-Volmer plots; sensitivity could be tailored by matrix or the sensing probe selection.


Assuntos
Nanofibras/química , Oxigênio/análise , Polímeros/química , Porfirinas/química , Resinas Acrílicas/química , Linhagem Celular Tumoral , Humanos , Processamento de Imagem Assistida por Computador , Nanofibras/ultraestrutura , Nitrogênio/análise , Permeabilidade , Poliésteres , Espectrometria de Fluorescência , Sulfonas/química
7.
J Nutr ; 144(5): 575-85, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24623846

RESUMO

Consumption of the long-chain ω-3 (n-3) polyunsaturated fatty acid docosahexaenoic acid (DHA) is associated with a reduced risk of cardiovascular disease and greater chemoprevention. However, the mechanisms underlying the biologic effects of DHA remain unknown. It is well known that microRNAs (miRNAs) are versatile regulators of gene expression. Therefore, we aimed to determine if the beneficial effects of DHA may be modulated in part through miRNAs. Loss of dicer 1 ribonuclease type III (DICER) in enterocyte Caco-2 cells supplemented with DHA suggested that several lipid metabolism genes are modulated by miRNAs. Analysis of miRNAs predicted to target these genes revealed several miRNA candidates that are differentially modulated by fatty acids. Among the miRNAs modulated by DHA were miR-192 and miR-30c. Overexpression of either miR-192 or miR-30c in enterocyte and hepatocyte cells suggested an effect on the expression of genes related to lipid metabolism, some of which were confirmed by endogenous inhibition of these miRNAs. Our results show in enterocytes that DHA exerts its biologic effect in part by regulating genes involved in lipid metabolism and cancer. Moreover, this response is mediated through miRNA activity. We validate novel targets of miR-30c and miR-192 related to lipid metabolism and cancer including nuclear receptor corepressor 2, isocitrate dehydrogenase 1, DICER, caveolin 1, ATP-binding cassette subfamily G (white) member 4, retinoic acid receptor ß, and others. We also present evidence that in enterocytes DHA modulates the expression of regulatory factor X6 through these miRNAs. Alteration of miRNA levels by dietary components in support of their pharmacologic modulation might be valuable in adjunct therapy for dyslipidemia and other related diseases.


Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Dislipidemias/genética , Enterócitos/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , MicroRNAs/metabolismo , Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Células CACO-2 , Caveolina 1/genética , Caveolina 1/metabolismo , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Dislipidemias/metabolismo , Enterócitos/fisiologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/fisiologia , Células Hep G2 , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Metabolismo dos Lipídeos/genética , RNA Interferente Pequeno/genética , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA