Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Clin Epigenetics ; 15(1): 174, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891670

RESUMO

BACKGROUND: Alpha (α)-radiation is a ubiquitous environmental agent with epigenotoxic effects. Human exposure to α-radiation at potentially harmful levels can occur repetitively over the long term via inhalation of naturally occurring radon gas that accumulates in enclosed spaces, or as a result of a single exposure from a nuclear accident. Alterations in epigenetic DNA methylation (DNAm) have been implicated in normal aging and cancer pathogenesis. Nevertheless, the effects of aberrations in the methylome of human lung cells following exposure to single or multiple α-irradiation events on these processes remain unexplored. RESULTS: We performed genome-wide DNAm profiling of human embryonic lung fibroblasts from control and irradiated cells using americium-241 α-sources. Cells were α-irradiated in quadruplicates to seven doses using two exposure regimens, a single-fraction (SF) where the total dose was given at once, and a multi-fraction (MF) method, where the total dose was equally distributed over 14 consecutive days. Our results revealed that SF irradiations were prone to a decrease in DNAm levels, while MF irradiations mostly increased DNAm. The analysis also showed that the gene body (i.e., exons and introns) was the region most altered by both the SF hypomethylation and the MF hypermethylation. Additionally, the MF irradiations induced the highest number of differentially methylated regions in genes associated with DNAm biomarkers of aging, carcinogenesis, and cardiovascular disease. The DNAm profile of the oncogenes and tumor suppressor genes suggests that the fibroblasts manifested a defensive response to the MF α-irradiation. Key DNAm events of ionizing radiation exposure, including changes in methylation levels in mitochondria dysfunction-related genes, were mainly identified in the MF groups. However, these alterations were under-represented, indicating that the mitochondria undergo adaptive mechanisms, aside from DNAm, in response to radiation-induced oxidative stress. CONCLUSIONS: We identified a contrasting methylomic profile in the lung fibroblasts α-irradiated to SF compared with MF exposures. These findings demonstrate that the methylome response of the lung cells to α-radiation is highly dependent on both the total dose and the exposure regimen. They also provide novel insights into potential biomarkers of α-radiation, which may contribute to the development of innovative approaches to detect, prevent, and treat α-particle-related diseases.


Assuntos
Metilação de DNA , DNA , Humanos , Fibroblastos , Pulmão , Biomarcadores
2.
Int J Radiat Biol ; 99(9): 1320-1331, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36881459

RESUMO

BACKGROUND: Exposure to different forms of ionizing radiation occurs in diverse occupational, medical, and environmental settings. Improving the accuracy of the estimated health risks associated with exposure is therefore, essential for protecting the public, particularly as it relates to chronic low dose exposures. A key aspect to understanding health risks is precise and accurate modeling of the dose-response relationship. Toward this vision, benchmark dose (BMD) modeling may be a suitable approach for consideration in the radiation field. BMD modeling is already extensively used for chemical hazard assessments and is considered statistically preferable to identifying low and no observed adverse effects levels. BMD modeling involves fitting mathematical models to dose-response data for a relevant biological endpoint and identifying a point of departure (the BMD, or its lower bound). Recent examples in chemical toxicology show that when applied to molecular endpoints (e.g. genotoxic and transcriptional endpoints), BMDs correlate to points of departure for more apical endpoints such as phenotypic changes (e.g. adverse effects) of interest to regulatory decisions. This use of BMD modeling may be valuable to explore in the radiation field, specifically in combination with adverse outcome pathways, and may facilitate better interpretation of relevant in vivo and in vitro dose-response data. To advance this application, a workshop was organized on June 3rd, 2022, in Ottawa, Ontario that brought together BMD experts in chemical toxicology and the radiation scientific community of researchers, regulators, and policy-makers. The workshop's objective was to introduce radiation scientists to BMD modeling and its practical application using case examples from the chemical toxicity field and demonstrate the BMDExpress software using a radiation dataset. Discussions focused on the BMD approach, the importance of experimental design, regulatory applications, its use in supporting the development of adverse outcome pathways, and specific radiation-relevant examples. CONCLUSIONS: Although further deliberations are needed to advance the use of BMD modeling in the radiation field, these initial discussions and partnerships highlight some key steps to guide future undertakings related to new experimental work.


Assuntos
Benchmarking , Modelos Teóricos , Benchmarking/métodos , Dano ao DNA , Medição de Risco/métodos , Relação Dose-Resposta a Droga
3.
Antioxidants (Basel) ; 12(3)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36978924

RESUMO

Although circadian biorhythms of mitochondria and cells are highly conserved and crucial for the well-being of complex animals, there is a paucity of studies on the reciprocal interactions between oxidative stress, redox modifications, metabolism, thermoregulation, and other major oscillatory physiological processes. To address this limitation, we hypothesize that circadian/ultradian interaction of the redoxome, bioenergetics, and temperature signaling strongly determine the differential activities of the sleep-wake cycling of mammalians and birds. Posttranslational modifications of proteins by reversible cysteine oxoforms, S-glutathionylation and S-nitrosylation are shown to play a major role in regulating mitochondrial reactive oxygen species production, protein activity, respiration, and metabolomics. Nuclear DNA repair and cellular protein synthesis are maximized during the wake phase, whereas the redoxome is restored and mitochondrial remodeling is maximized during sleep. Hence, our analysis reveals that wakefulness is more protective and restorative to the nucleus (nucleorestorative), whereas sleep is more protective and restorative to mitochondria (mitorestorative). The "redox-bioenergetics-temperature and differential mitochondrial-nuclear regulatory hypothesis" adds to the understanding of mitochondrial respiratory uncoupling, substrate cycling control and hibernation. Similarly, this hypothesis explains how the oscillatory redox-bioenergetics-temperature-regulated sleep-wake states, when perturbed by mitochondrial interactome disturbances, influence the pathogenesis of aging, cancer, spaceflight health effects, sudden infant death syndrome, and diseases of the metabolism and nervous system.

4.
Free Radic Biol Med ; 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36462628

RESUMO

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal

5.
Exp Eye Res ; 223: 109192, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35917999

RESUMO

This article explores the role that oxygen levels in US spacecraft from 1961 to 1998 have on the development of cataracts induced by space radiation in astronauts and whether oxygen levels are well accounted for in experimental studies examining cataractogenesis. The first epidemiological report in 2001 linked an increased risk of the primary types of cataracts, and nuclear cataract alone, for astronauts with higher lens doses. However, later studies of US astronauts in 2009 and 2012 reported a higher risk of cortical cataract and posterior subcapsular cataract, but not for nuclear cataract. Firstly, it is postulated that the high oxygen level atmospheres of spacecraft employed before 1976 were a factor in promoting nuclear cataract. The high oxygen levels of hyperbaric oxygen therapy are reportedly associated with nuclear cataract, and the low intraocular oxygen levels of diabetic patients are possibly linked to their higher risk of posterior subcapsular cataract and cortical cataract. Secondly, it is hypothesized that the normal hypoxic environment of the lens and lens epithelial cells (LECs), and all stem/progenitor cells in general, have an optimal Goldilocks range of oxygen levels. Too high a lenticular oxygen level increases oxidative stress and radiosensitivity due to the oxygen effect. Whereas too low an oxygen tension also increases oxidative stress and disrupts LEC differentiation. Even so, a focused literature search of the PubMed database of in vitro experiments with LECs shows that studies rarely account for the hypoxic state of the normal lens, whether ionizing radiation is a factor or not. It is therefore recommended that ocular physioxic levels should therefore be considered when designing in vitro studies to better understand the progression of cataractogenesis on long-duration missions to the Moon and Mars.


Assuntos
Catarata , Cristalino , Astronautas , Catarata/etiologia , Humanos , Cristalino/efeitos da radiação , Oxigênio
6.
Int J Mol Sci ; 23(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35055062

RESUMO

Theoretical evaluations indicate the radiation weighting factor for thermal neutrons differs from the current International Commission on Radiological Protection (ICRP) recommended value of 2.5, which has radiation protection implications for high-energy radiotherapy, inside spacecraft, on the lunar or Martian surface, and in nuclear reactor workplaces. We examined the relative biological effectiveness (RBE) of DNA damage generated by thermal neutrons compared to gamma radiation. Whole blood was irradiated by 64 meV thermal neutrons from the National Research Universal reactor. DNA damage and erroneous DNA double-strand break repair was evaluated by dicentric chromosome assay (DCA) and cytokinesis-block micronucleus (CBMN) assay with low doses ranging 6-85 mGy. Linear dose responses were observed. Significant DNA aberration clustering was found indicative of high ionizing density radiation. When the dose contribution of both the 14N(n,p)14C and 1H(n,γ)2H capture reactions were considered, the DCA and the CBMN assays generated similar maximum RBE values of 11.3 ± 1.6 and 9.0 ± 1.1, respectively. Consequently, thermal neutron RBE is approximately four times higher than the current ICRP radiation weighting factor value of 2.5. This lends support to bimodal peaks in the quality factor for RBE neutron energy response, underlining the importance of radiological protection against thermal neutron exposures.


Assuntos
Modelos Teóricos , Nêutrons , Eficiência Biológica Relativa , Aberrações Cromossômicas/efeitos da radiação , Dano ao DNA/efeitos da radiação , Relação Dose-Resposta à Radiação , Humanos , Linfócitos/metabolismo , Linfócitos/efeitos da radiação , Testes para Micronúcleos/métodos
7.
Aging (Albany NY) ; 13(20): 23545-23578, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34695806

RESUMO

The age-specific trend of cancer incidence rates, but not its magnitude, is well described employing the multistage theory of carcinogenesis by Armitage and Doll in combination with the senescence model of Pompei and Wilson. We derived empirical parameters of the multistage-senescence model from U.S. Surveillance, Epidemiology, and End Results (SEER) incidence data from 2000-2003 and 2010-2013 for The Cancer Genome Atlas (TCGA) cancer types. Under the assumption of a constant tumor-specific transition rate between stages, there is an extremely strong linear relationship (P < 0.0001) between the number of stages and the stage transition rate. The senescence tumor suppression factor for 20 non-reproductive cancers is remarkably consistent (0.0099±0.0005); however, five female reproductive cancers have significantly higher tumor suppression. The peak incidence rate for non-reproductive cancers occurs at a younger age for cancers with fewer stages and their carcinogenic stages are of longer duration. Driver gene mutations are shown to contribute on average only about a third of the carcinogenic stages of different tumor types. A tumor's accumulated incidence, calculated using a two-variable (age, stage) model, is strongly associated with intrinsic cancer risk. During both early adulthood and senescence, the pace of tumor suppression appears to be synchronized across most cancer types, suggesting the presence of overlapping evolutionary processes.


Assuntos
Fatores Etários , Carcinogênese/genética , Neoplasias , Proteínas Supressoras de Tumor/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Humanos , Incidência , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Neoplasias/classificação , Neoplasias/epidemiologia , Neoplasias/genética , Neoplasias/patologia , Adulto Jovem
8.
Biochim Biophys Acta Mol Cell Res ; 1868(1): 118854, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32926942

RESUMO

Mitochondria are highly dynamic organelles. Alterations in mitochondrial dynamics are causal or are linked to numerous neurodegenerative, neuromuscular, and metabolic diseases. It is generally thought that cells with altered mitochondrial structure are prone to mitochondrial dysfunction, increased reactive oxygen species generation and widespread oxidative damage. The objective of the current study was to investigate the relationship between mitochondrial dynamics and the master cellular antioxidant, glutathione (GSH). We reveal that mouse embryonic fibroblasts (MEFs) lacking the mitochondrial fusion machinery display elevated levels of GSH, which limits oxidative damage. Moreover, targeted metabolomics and 13C isotopic labeling experiments demonstrate that cells lacking the inner membrane fusion GTPase OPA1 undergo widespread metabolic remodeling altering the balance of citric acid cycle intermediates and ultimately favoring GSH synthesis. Interestingly, the GSH precursor and antioxidant n-acetylcysteine did not increase GSH levels in OPA1 KO cells, suggesting that cysteine is not limiting for GSH production in this context. Post-mitotic neurons were unable to increase GSH production in the absence of OPA1. Finally, the ability to use glycolysis for ATP production was a requirement for GSH accumulation following OPA1 deletion. Thus, our results demonstrate a novel role for mitochondrial fusion in the regulation of GSH synthesis, and suggest that cysteine availability is not limiting for GSH synthesis in conditions of mitochondrial fragmentation. These findings provide a possible explanation for the heightened sensitivity of certain cell types to alterations in mitochondrial dynamics.


Assuntos
Antioxidantes/metabolismo , Glutationa/genética , Mitocôndrias/genética , Dinâmica Mitocondrial/genética , Trifosfato de Adenosina/metabolismo , Animais , Apoptose/genética , GTP Fosfo-Hidrolases/genética , Glutationa/biossíntese , Glicólise/genética , Humanos , Fusão de Membrana/genética , Camundongos , Mitocôndrias/metabolismo , Estresse Oxidativo/genética , Espécies Reativas de Oxigênio/metabolismo
9.
Int J Radiat Biol ; 96(11): 1339-1361, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32897800

RESUMO

PURPOSE: Since the exact development of posterior subcapsular cataracts (PSCs) is poorly understood, we review various risk factors and propose a two-stage etiology for PSCs. METHODS: The biological mechanisms associated with age-related cataracts (primarily nuclear cataracts, cortical cataracts and PSCs) were reviewed in relation to selected risk factors that induce PSCs (including atopy, diabetes, hypoparathyroidism, myopia, retinitis, solar radiation, steroid use, uveitis, vitrectomy and ionizing radiation). We particularly focused on ionizing radiation, as this is known to be a risk factor specific to PSCs. Based on an analysis of the reviewed material, we propose a detailed explanation of the etiology of PSCs. CONCLUSIONS: Lens epithelial cells (LECs) and lens fiber cells are normally hypoxic and therefore very sensitive to changes in oxidative stress, as quantified by the radiation oxygen effect. We hypothesize that the development of PSC opacities is a two-stage process. Stage I, early in life, is driven by risk factors that promote oxidative stress and ion-pump disruption, harming lens fibers and causing aberrant LECs to proliferate and ectopically migrate as Wedl cells (perhaps by processes associated with an epithelial to mesenchymal transition) to the posterior pole region. After a latent period, in Stage II, the development of PSCs advances mainly due to chronic inflammation and other premature aging-related mechanisms that promote mature vacuolar or plaque PSC. This two-stage hypothesis of PSC etiology accounts for risk factors, such as aging, diabetes and ionizing radiation, which directly affects LECs and the lens. In addition, these risk factors can damage other ocular regions, such as the retina and vitreous, that also indirectly contribute to the development of PSCs. It is possible that the incidence of PSCs may be reduced by reversing the effects of Stage I through various means, including ocular antioxidants.


Assuntos
Envelhecimento , Catarata/etiologia , Complicações do Diabetes/etiologia , Lesões por Radiação/etiologia , Catarata/epidemiologia , Catarata/fisiopatologia , Complicações do Diabetes/epidemiologia , Complicações do Diabetes/fisiopatologia , Humanos , Lesões por Radiação/epidemiologia , Lesões por Radiação/fisiopatologia , Fatores de Risco
10.
FASEB J ; 33(8): 9263-9278, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31112400

RESUMO

Mitochondria are highly dynamic organelles that respond rapidly to a number of stressors to regulate energy transduction, cell death signaling, and reactive oxygen species generation. We hypothesized that mitochondrial remodeling, comprising both structural and functional alterations, following ionizing radiation (IR) may underlie some of the tenets of radiobiology. Mesenchymal stem cells (MSCs) are precursors of bone marrow stroma and are altered in acute myeloid leukemia and by radiation and chemotherapy. Here, we report on changes in mitochondrial remodeling in human MSCs following X-ray IR. Mitochondrial function was significantly increased in MSCs 4 h after IR as measured by mitochondrial oxygen consumption. Consistent with this elevated functional effect, electron transport chain supercomplexes were also increased in irradiated samples. In addition, mitochondria were significantly, albeit modestly, elongated, as measured by high-throughput automated confocal imaging coupled with automated mitochondrial morphometric analyses. We also demonstrate in fibroblasts that mitochondrial remodeling is required for the adaptation of cells to IR. To determine novel mechanisms involved in mitochondrial remodeling, we performed quantitative proteomics on isolated mitochondria from cells following IR. Label-free quantitative mitochondrial proteomics revealed notable changes in proteins in irradiated samples and identified prosaposin, and potentially its daughter protein saposin-B, as a potential candidate for regulating mitochondrial function following IR. Whereas research into the biologic effects of cellular irradiation has long focused on nuclear DNA effects, our experimental work, along with that of others, is finding that mitochondrial effects may have broader implications in the field of stress adaptation and cell death in cancer (including leukemia) and other disease states.-Patten, D. A., Ouellet, M., Allan, D. S., Germain, M., Baird, S. D., Harper, M.-E., Richardson, R. B. Mitochondrial adaptation in human mesenchymal stem cells following ionizing radiation.


Assuntos
Adaptação Fisiológica , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos da radiação , Mitocôndrias/efeitos da radiação , Animais , Western Blotting , Citrato (si)-Sintase/metabolismo , Citocromos c/metabolismo , Dano ao DNA/efeitos da radiação , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Células HeLa , Humanos , Camundongos , Mitocôndrias/metabolismo , Oxirredução/efeitos da radiação , Consumo de Oxigênio/efeitos da radiação , Radiação Ionizante , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia
11.
Int J Radiat Biol ; 95(10): 1361-1371, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30582711

RESUMO

Health risks associated with the exposure of humans to low-dose ionizing radiation are currently estimated using the Linear-No-Threshold model. Over the last few decades, however, this model has been widely criticized for inconsistency with a large body of experimental evidence. Substantial efforts have been made to delineate biological mechanisms and health-related outcomes of low-dose radiation. These include a large DOE-funded Low Dose program operated in the 2000s, as well as the EU funded programs, previously NOTE and DOREMI and currently MELODI. Although not as widely known, the Atomic Energy of Canada Limited (AECL) in Chalk River, operated a low-dose radiobiology program since as early as 1948. The Canadian Nuclear Laboratories (CNL), the successor to AECL since 2015, has expanded this program into new areas making it the world's most robust, centrally coordinated and long-lived research efforts to delineate the biological effects of low-dose radiation. The purpose of this review is to provide a high-level overview of the low-dose radiobiology program maintained at CNL while capturing the historical perspectives. Past studies carried out at CNL have substantially influenced the area of low-dose radiobiology, exemplified by highly cited papers showing delays in spontaneous tumorigenesis in low-dose irradiated mice. The current low-dose research program at CNL is not only addressing a wide range of mechanistic questions about the biological effects of low doses - from genetic to epigenetic to immunological questions - but also moving toward novel areas, such as the dosimetry and health consequences of space radiation and the use of low-dose radiation in cancer therapy and regenerative medicine.


Assuntos
Energia Nuclear , Radiobiologia/tendências , Pesquisa/tendências , Algoritmos , Animais , Canadá , Reparo do DNA , Modelos Animais de Doenças , Humanos , Sistema Imunitário , Cooperação Internacional , Modelos Lineares , Camundongos , Mitocôndrias/efeitos da radiação , Neoplasias/radioterapia , Neoplasias Induzidas por Radiação/epidemiologia , Neoplasias Induzidas por Radiação/prevenção & controle , Nêutrons , Radiometria , Espécies Reativas de Oxigênio , Células-Tronco
12.
Genes Cancer ; 9(5-6): 155-175, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-30603053

RESUMO

Elevated metabolism is a key hallmark of multiple cancers, serving to fulfill high anabolic demands. Ovarian cancer (OVCA) is the fifth leading cause of cancer deaths in women with a high mortality rate (45%). Chemoresistance is a major hurdle for OVCA treatment. Although substantial evidence suggests that metabolic reprogramming contributes to anti-apoptosis and the metastasis of multiple cancers, the link between tumor metabolism and chemoresistance in OVCA remains unknown. While clinical trials targeting metabolic reprogramming alone have been met with limited success, the synergistic effect of inhibiting tumor-specific metabolism with traditional chemotherapy warrants further examination, particularly in OVCA. This review summarizes the role of key glycolytic enzymes and other metabolic synthesis pathways in the progression of cancer and chemoresistance in OVCA. Within this context, mitochondrial dynamics (fission, fusion and cristae structure) are addressed regarding their roles in controlling metabolism and apoptosis, closely associated with chemosensitivity. The roles of multiple key oncogenes (Akt, HIF-1α) and tumor suppressors (p53, PTEN) in metabolic regulation are also described. Next, this review summarizes recent research of metabolism and future direction. Finally, we examine clinical drugs and inhibitors to target glycolytic metabolism, as well as the rationale for such strategies as potential therapeutics to overcome chemoresistant OVCA.

13.
Oncotarget ; 7(16): 21469-83, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-26894978

RESUMO

It has been more than 60 years since the discovery of the oxygen effect that empirically demonstrates the direct association between cell radiosensitivity and oxygen tension, important parameters in radiotherapy. Yet the mechanisms underlying this principal tenet of radiobiology are poorly understood. Better understanding of the oxygen effect may explain difficulty in eliminating hypoxic tumor cells, a major cause of regrowth after therapy. Our analysis utilizes the Howard-Flanders and Alper formula, which describes the relationship of radiosensitivity with oxygen tension. Here, we assign and qualitatively assess the relative contributions of two important mechanisms. The first mechanism involves the emission of reactive oxygen species from the mitochondrial electron transport chain, which increases with oxygen tension. The second mechanism is related to an energy and repair deficit, which increases with hypoxia. Following a radiation exposure, the uncoupling of the oxidative phosphorylation system (proton leak) in mitochondria lowers the emission of reactive oxygen species which has implications for fractionated radiotherapy, particularly of hypoxic tumors. Our analysis shows that, in oxygenated tumor and normal cells, mitochondria, rather than the nucleus, are the primary loci of radiotherapy effects, especially for low linear energy transfer radiation. Therefore, the oxygen effect can be explained by radiation-induced effects in mitochondria that generate reactive oxygen species, which in turn indirectly target nuclear DNA.


Assuntos
Mitocôndrias/metabolismo , Estresse Oxidativo , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Trifosfato de Adenosina/metabolismo , Algoritmos , Hipóxia Celular , Transporte de Elétrons/efeitos da radiação , Células Eucarióticas/metabolismo , Células Eucarióticas/efeitos da radiação , Humanos , Hipóxia , Mitocôndrias/efeitos da radiação , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/efeitos da radiação , Modelos Biológicos , Neoplasias/metabolismo , Neoplasias/radioterapia , Tolerância a Radiação , Radiação Ionizante
14.
Stem Cell Rev Rep ; 12(2): 235-44, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26649729

RESUMO

PURPOSE: The role of bone marrow-derived mesenchymal stem/stromal cells (MSCs) in creating a permissive microenvironment that supports the emergence and progression of acute myeloid leukemia (AML) is not well established. We investigated the extent to which adipogenic differentiation in normal MSCs alters hematopoietic supportive capacity and we undertook an in-depth comparative study of human bone marrow MSCs derived from newly diagnosed AML patients and healthy donors, including an assessment of adipogenic differentiation capacity. FINDINGS: MSCs from healthy controls with partial induction of adipogenic differentiation, in comparison to MSCs undergoing partial osteogenic differentiation, expressed increased levels of hematopoietic factors and induced greater proliferation, decreased quiescence and reduced in vitro hematopoietic colony forming capacity of CD34(+) hematopoietic stem and progenitor cells (HSPCs). Moreover, we observed that AML-derived MSCs had markedly increased adipogenic potential and delayed osteogenic differentiation, while maintaining normal morphology and viability. AML-derived MSCs, however, possessed reduced proliferative capacity and decreased frequency of subendothelial quiescent MSCs compared to controls. CONCLUSION: Our results support the notion of a bone marrow microenvironment characterized by increased propensity toward adipogenesis in AML, which may negatively impact normal hematopoiesis. Larger confirmatory studies are needed to understand the impact of various clinical factors. Novel leukemia treatments aimed at normalizing bone marrow niches may enhance the competitive advantage of normal hematopoietic progenitors over leukemia cells.


Assuntos
Adipogenia/fisiologia , Células da Medula Óssea/fisiologia , Hematopoese/fisiologia , Leucemia Mieloide Aguda/patologia , Células-Tronco Mesenquimais/fisiologia , Nicho de Células-Tronco/fisiologia , Adulto , Idoso , Medula Óssea/fisiologia , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Feminino , Células-Tronco Hematopoéticas , Humanos , Masculino , Pessoa de Meia-Idade
15.
Life Sci Space Res (Amst) ; 6: 1-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26256622

RESUMO

Occupational exposures from ionizing radiation are currently regulated for airline travel (<20 km) and for missions to low-Earth orbit (∼300-400 km). Aircrew typically receive between 1 and 6 mSv of occupational dose annually, while aboard the International Space Station, the area radiation dose equivalent measured over just 168 days was 106 mSv at solar minimum conditions. It is anticipated that space tourism vehicles will reach suborbital altitudes of approximately 100 km and, therefore, the annual occupational dose to flight crew during repeated transits is expected to fall somewhere between those observed for aircrew and astronauts. Unfortunately, measurements of the radiation environment at the high altitudes reached by suborbital vehicles are sparse, and modelling efforts have been similarly limited. In this paper, preliminary MCNPX radiation transport code simulations are developed of the secondary neutron flux profile in air from surface altitudes up to low Earth orbit at solar minimum conditions and excluding the effects of spacecraft shielding. These secondary neutrons are produced by galactic cosmic radiation interacting with Earth's atmosphere and are among the sources of radiation that can pose a health risk. Associated estimates of the operational neutron ambient dose equivalent, used for radiation protection purposes, and the neutron effective dose equivalent that is typically used for estimates of stochastic health risks, are provided in air. Simulations show that the neutron radiation dose rates received at suborbital altitudes are comparable to those experienced by aircrew flying at 7 to 14 km. We also show that the total neutron dose rate tails off beyond the Pfotzer maximum on ascension from surface up to low Earth orbit.


Assuntos
Radiação Cósmica/efeitos adversos , Nêutrons/efeitos adversos , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/prevenção & controle , Doses de Radiação , Voo Espacial , Altitude , Astronautas , Planeta Terra , Humanos , Método de Monte Carlo , Pilotos , Monitoramento de Radiação , Proteção Radiológica , Astronave
16.
Stem Cell Rev Rep ; 11(1): 150-60, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25091427

RESUMO

BACKGROUND: The therapeutic potential of mesenchymal stromal cells (MSCs) may be largely mediated by paracrine factors contained in microvesicles (MV) released from intracellular endosomes. A systematic review of controlled interventional animal studies was performed to identify models of organ injury where clinical translation of MSC-derived microvesicle therapy appears most promising as regenerative therapy. METHODS: A total of 190 published articles were identified in our systematic search of electronic databases (MEDLINE, EMBASE, PUBMED). After screening for eligibility, a total of 17 controlled studies testing MSC-derived MVs as therapeutic interventions in animal models of disease underwent comprehensive review, quality assessment, and data extraction. RESULTS: Thirteen studies addressed the regenerative potential following organ injury. Six studies were included on acute kidney injury, 4 on myocardial infarction and reperfusion injury, 1 on hind limb ischemia, 1 on liver injury, and 1 on hypoxic lung injury. Four studies addressed immunological effects of MSC-derived MVs on inhibiting tumor growth. Twelve studies (71%) provided explicit information regarding the number of animals allocated to treatment or control groups. Five studies (29%) randomly assigned animals to treatment or control groups and only 1 study (6%) reported on blinding. Therapeutic intervention involved isolation of exosomes (40-100 nm) in eight studies, while nine studies tested unfractionated microvesicles (<1,000 nm). In studies of tissue regeneration, all 13 reported that treatment with MSC-derived MVs improved at least one major/clinical parameter associated with organ dysfunction. Three of 4 studies evaluating the inhibition of tumor growth reported benefit. CONCLUSIONS: In preclinical studies, the use of MSC-derived MVs is strongly associated with improved organ function following injury and may be useful for inhibiting tumor growth. Improved preclinical study quality in terms of treatment allocation reporting, randomization and blinding will accelerate needed progress towards clinical trials that should assess feasibility and safety of this therapeutic approach in humans.


Assuntos
Injúria Renal Aguda/terapia , Micropartículas Derivadas de Células/transplante , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Infarto do Miocárdio/terapia , Traumatismo por Reperfusão/terapia , Animais , Humanos , Resultado do Tratamento
17.
Mech Ageing Dev ; 139: 31-40, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24927913

RESUMO

Knudson's carcinogenic model, which simulates incidence rates for retinoblastoma, provides compelling evidence for a two-stage mutational process. However, for more complex cancers, existing multistage models are less convincing. To fill this gap, I hypothesize that neoplasms preferentially arise when stem cell exhaustion creates a short supply of progenitor cells at ages of high proliferative demand. To test this hypothesis, published datasets were employed to model the age distribution of osteochondroma, a benign lesion, and osteosarcoma, a malignant one. The supply of chondrogenic stem-like cells in femur growth plates of children and adolescents was evaluated and compared with the progenitor cell demand of longitudinal bone growth. Similarly, the supply of osteoprogenitor cells from birth to old age was compared with the demands of bone formation. Results show that progenitor cell demand-to-supply ratios are a good risk indicator, exhibiting similar trends to the unimodal and bimodal age distributions of osteochondroma and osteosarcoma, respectively. The hypothesis also helps explain Peto's paradox and the finding that taller individuals are more prone to cancers and have shorter lifespans. The hypothesis was tested, in the manner of Knudson, by its ability to convincingly explain and demonstrate, for the first time, a bone tumour's bimodal age-incidence curve.


Assuntos
Envelhecimento/metabolismo , Neoplasias Ósseas/metabolismo , Modelos Biológicos , Osteossarcoma/metabolismo , Células-Tronco/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/patologia , Neoplasias Ósseas/patologia , Criança , Pré-Escolar , Lâmina de Crescimento/metabolismo , Lâmina de Crescimento/patologia , Humanos , Incidência , Pessoa de Meia-Idade , Osteossarcoma/patologia , Células-Tronco/patologia
18.
Exp Gerontol ; 55: 80-91, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24685641

RESUMO

Domination of cell proliferation over cell death is a driving force for carcinogenesis, whereas reduced cell proliferation and increased cell death are characteristic of ageing. We employed published data to estimate representative mean values of cell turnover times for 31 different organs and tissues in adult humans and animals (when data in humans were lacking) as well as functional mass loss for 5 organs, accounting for actual mass loss and tissue conversion to fat, in humans over the adult period, age 25 to 70. We found that greater actual and functional mass loss was significantly associated (P=0.001 and P<0.0001, respectively) with the log of shorter cell turnover times. We propose that this is characteristic of stem cell exhaustion and replicative senescence. In addition, we provide quantitative evidence that, in many organs, involution is evident even in young adults. On the basis of published mass measurements of major organs, by analysis of covariance, we identified examples of significant (P≤0.05), accelerated actual or functional mass loss and ageing from early to late adulthood. We hypothesise and quantitatively demonstrate that functional mass loss accelerates with ageing by incorporating the contribution of actual mass loss, tissue conversion to fatty or fibrous tissue, and the presence of apoptotic, necrotic and senescent cells. We propose that mass loss, linked to replicative senescence, is an evolutionary adaptation that effectively limits cancer in young adults, as mass loss is first apparent soon after the end of the growth period, accelerating in the more elderly as biological conditions deviate away from those prevailing in youth, when the selective pressure on pleiotropic genes is greatest.


Assuntos
Senilidade Prematura/patologia , Envelhecimento/patologia , Apoptose/fisiologia , Proliferação de Células/fisiologia , Senescência Celular/fisiologia , Humanos , Tamanho do Órgão/fisiologia
19.
Cell Cycle ; 12(15): 2468-78, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23839036

RESUMO

TP53's role as guardian of the genome diminishes with age, as the probability of mutation increases. Previous studies have shown an association between p53 gene mutations and cancer. However, the role of somatic TP53 mutations in the steep rise in cancer rates with aging has not been investigated at a population level. This relationship was quantified using the International Agency for Research on Cancer (IARC) TP53 and GLOBOCAN cancer databases. The power function exponent of the cancer rate was calculated for 5-y age-standardized incidence or mortality rates for up to 25 cancer sites occurring in adults of median age 42 to 72 y. Linear regression analysis of the mean percentage of a cancer's TP53 mutations and the corresponding cancer exponent was conducted for four populations: worldwide, Japan, Western Europe, and the United States. Significant associations (P ≤ 0.05) were found for incidence rates but not mortality rates. Regardless of the population studied, positive associations were found for all cancer sites, with more significant associations for solid tumors, excluding the outlier prostate cancer or sex-related tumors. Worldwide and Japanese populations yielded P values as low as 0.002 and 0.005, respectively. For the United States, a significant association was apparent only when analysis utilized the Surveillance, Epidemiology, and End Results (SEER) database. This study found that TP53 mutations accounts for approximately one-quarter and one-third of the aging-related rise in the worldwide and Japanese incidence of all cancers, respectively. These significant associations between TP53 mutations and the rapid rise in cancer incidence with aging, considered with previously published literature, support a causal role for TP53 according to the Bradford-Hill criteria. However, questions remain concerning the contribution of TP53 mutations to neoplastic development and the role of factors such as genetic instability, obesity, and gene deficiencies other than TP53 that reduce p53 activity.


Assuntos
Neoplasias/genética , Proteína Supressora de Tumor p53/genética , Adulto , Idoso , Índice de Massa Corporal , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Incidência , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Mutação , Neoplasias/mortalidade , Programa de SEER
20.
Phys Med Biol ; 58(10): 3301-19, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23615276

RESUMO

Alpha (α) particles and low-energy beta (ß) particles present minimal risk for external exposure. While these particles can induce leukemia and bone cancer due to internal exposure, they can also be beneficial for targeted radiation therapies. In this paper, a trabecular bone model is presented to investigate the radiation dose from bone- and marrow-seeking α and ß emitters to different critical compartments (targets) of trabecular bone for different age groups. Two main issues are addressed with Monte Carlo simulations. The first is the absorption fractions (AFs) from bone and marrow to critical targets within the bone for different age groups. The other issue is the application of (223)Ra for the radiotherapy treatment of bone metastases. Both a static model and a simulated bone remodeling process are established for trabecular bone. The results show significantly lower AFs from radionuclide sources in the bone volume to the peripheral marrow and the haematopoietic marrow for adults than for newborns and children. The AFs from sources on the bone surface and in the bone marrow to peripheral marrow and haematopoietic marrow also varies for adults and children depending on the energy of the particles. Regarding the use of (223)Ra as a radionuclide for the radiotherapy of bone metastases, the simulations show a significantly higher dose from (223)Ra and its progeny in forming bone to the target compartment of bone metastases than that from two other more commonly used ß-emitting radiopharmaceuticals, (153)Sm and (89)Sr. There is also a slightly lower dose from (223)Ra in forming bone to haematopoietic marrow than that from (153)Sm and (89)Sr. These results indicate a higher therapy efficiency and lower marrow toxicity from (223)Ra and its progeny. In conclusion, age-related changes in bone dimension and cellularity seem to significantly affect the internal dose from α and ß emitters in the bone and marrow to critical targets, and (223)Ra may be a more efficient radiopharmaceutical for the treatment of bone metastases than (153)Sm and (89)Sr, if the diffusion of (219)Rn to the bone marrow is insignificant.


Assuntos
Partículas alfa/efeitos adversos , Partículas beta/efeitos adversos , Medula Óssea/efeitos da radiação , Osso e Ossos/efeitos da radiação , Método de Monte Carlo , Doses de Radiação , Adulto , Fatores Etários , Neoplasias Ósseas/radioterapia , Neoplasias Ósseas/secundário , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Modelos Biológicos , Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA