Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nat Commun ; 15(1): 4021, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740751

RESUMO

The unexplained protective effect of childhood adiposity on breast cancer risk may be mediated via mammographic density (MD). Here, we investigate a complex relationship between adiposity in childhood and adulthood, puberty onset, MD phenotypes (dense area (DA), non-dense area (NDA), percent density (PD)), and their effects on breast cancer. We use Mendelian randomization (MR) and multivariable MR to estimate the total and direct effects of adiposity and age at menarche on MD phenotypes. Childhood adiposity has a decreasing effect on DA, while adulthood adiposity increases NDA. Later menarche increases DA/PD, but when accounting for childhood adiposity, this effect is attenuated. Next, we examine the effect of MD on breast cancer risk. DA/PD have a risk-increasing effect on breast cancer across all subtypes. The MD SNPs estimates are heterogeneous, and additional analyses suggest that different mechanisms may be linking MD and breast cancer. Finally, we evaluate the role of MD in the protective effect of childhood adiposity on breast cancer. Mediation MR analysis shows that 56% (95% CIs [32%-79%]) of this effect is mediated via DA. Our finding suggests that higher childhood adiposity decreases mammographic DA, subsequently reducing breast cancer risk. Understanding this mechanism is important for identifying potential intervention targets.


Assuntos
Adiposidade , Densidade da Mama , Neoplasias da Mama , Mamografia , Menarca , Análise da Randomização Mendeliana , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/diagnóstico por imagem , Feminino , Adiposidade/genética , Fatores de Risco , Criança , Tamanho Corporal , Adulto , Polimorfismo de Nucleotídeo Único , Pessoa de Meia-Idade
2.
EBioMedicine ; 100: 104977, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38290287

RESUMO

BACKGROUND: Type 2 diabetes is associated with higher risk of several cancer types. However, the biological intermediates driving this relationship are not fully understood. As novel interventions for treating and managing type 2 diabetes become increasingly available, whether they also disrupt the pathways leading to increased cancer risk is currently unknown. We investigated the effect of a type 2 diabetes intervention, in the form of intentional weight loss, on circulating proteins associated with cancer risk to gain insight into potential mechanisms linking type 2 diabetes and adiposity with cancer development. METHODS: Fasting serum samples from participants with diabetes enrolled in the Diabetes Remission Clinical Trial (DiRECT) receiving the Counterweight-Plus weight-loss programme (intervention, N = 117, mean weight-loss 10 kg, 46% diabetes remission) or best-practice care by guidelines (control, N = 143, mean weight-loss 1 kg, 4% diabetes remission) were subject to proteomic analysis using the Olink Oncology-II platform (48% of participants were female; 52% male). To identify proteins which may be altered by the weight-loss intervention, the difference in protein levels between groups at baseline and 1 year was examined using linear regression. Mendelian randomization (MR) was performed to extend these results to evaluate cancer risk and elucidate possible biological mechanisms linking type 2 diabetes and cancer development. MR analyses were conducted using independent datasets, including large cancer meta-analyses, UK Biobank, and FinnGen, to estimate potential causal relationships between proteins modified during intentional weight loss and the risk of colorectal, breast, endometrial, gallbladder, liver, and pancreatic cancers. FINDINGS: Nine proteins were modified by the intervention: glycoprotein Nmb; furin; Wnt inhibitory factor 1; toll-like receptor 3; pancreatic prohormone; erb-b2 receptor tyrosine kinase 2; hepatocyte growth factor; endothelial cell specific molecule 1 and Ret proto-oncogene (Holm corrected P-value <0.05). Mendelian randomization analyses indicated a causal relationship between predicted circulating furin and glycoprotein Nmb on breast cancer risk (odds ratio (OR) = 0.81, 95% confidence interval (CI) = 0.67-0.99, P-value = 0.03; and OR = 0.88, 95% CI = 0.78-0.99, P-value = 0.04 respectively), though these results were not supported in sensitivity analyses examining violations of MR assumptions. INTERPRETATION: Intentional weight loss among individuals with recently diagnosed diabetes may modify levels of cancer-related proteins in serum. Further evaluation of the proteins identified in this analysis could reveal molecular pathways that mediate the effect of adiposity and type 2 diabetes on cancer risk. FUNDING: The main sources of funding for this work were Diabetes UK, Cancer Research UK, World Cancer Research Fund, and Wellcome.


Assuntos
Diabetes Mellitus Tipo 2 , Neoplasias , Humanos , Masculino , Feminino , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/terapia , Furina , Proteômica , Obesidade/complicações , Obesidade/terapia , Redução de Peso , Glicoproteínas , Análise da Randomização Mendeliana , Neoplasias/etiologia
3.
Eur J Nutr ; 63(2): 377-396, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37989797

RESUMO

PURPOSE: To investigate the role of adiposity in the associations between ultra-processed food (UPF) consumption and head and neck cancer (HNC) and oesophageal adenocarcinoma (OAC) in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. METHODS: Our study included 450,111 EPIC participants. We used Cox regressions to investigate the associations between the consumption of UPFs and HNC and OAC risk. A mediation analysis was performed to assess the role of body mass index (BMI) and waist-to-hip ratio (WHR) in these associations. In sensitivity analyses, we investigated accidental death as a negative control outcome. RESULTS: During a mean follow-up of 14.13 ± 3.98 years, 910 and 215 participants developed HNC and OAC, respectively. A 10% g/d higher consumption of UPFs was associated with an increased risk of HNC (hazard ratio [HR] = 1.23, 95% confidence interval [CI] 1.14-1.34) and OAC (HR = 1.24, 95% CI 1.05-1.47). WHR mediated 5% (95% CI 3-10%) of the association between the consumption of UPFs and HNC risk, while BMI and WHR, respectively, mediated 13% (95% CI 6-53%) and 15% (95% CI 8-72%) of the association between the consumption of UPFs and OAC risk. UPF consumption was positively associated with accidental death in the negative control analysis. CONCLUSIONS: We reaffirmed that higher UPF consumption is associated with greater risk of HNC and OAC in EPIC. The proportion mediated via adiposity was small. Further research is required to investigate other mechanisms that may be at play (if there is indeed any causal effect of UPF consumption on these cancers).


Assuntos
Adenocarcinoma , Neoplasias Esofágicas , Neoplasias de Cabeça e Pescoço , Humanos , Adiposidade , Estudos Prospectivos , Alimento Processado , Análise de Mediação , Obesidade , Adenocarcinoma/epidemiologia , Adenocarcinoma/etiologia , Fast Foods/efeitos adversos , Dieta , Manipulação de Alimentos
4.
medRxiv ; 2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37693539

RESUMO

Observational studies suggest that mammographic density (MD) may have a role in the unexplained protective effect of childhood adiposity on breast cancer risk. Here, we investigated a complex and interlinked relationship between puberty onset, adiposity, MD, and their effects on breast cancer using Mendelian randomization (MR). We estimated the effects of childhood and adulthood adiposity, and age at menarche on MD phenotypes (dense area (DA), non-dense area (NDA), percent density (PD)) using MR and multivariable MR (MVMR), allowing us to disentangle their total and direct effects. Next, we examined the effect of MD on breast cancer risk, including risk of molecular subtypes, and accounting for genetic pleiotropy. Finally, we used MVMR to evaluate whether the protective effect of childhood adiposity on breast cancer was mediated by MD. Childhood adiposity had a strong inverse effect on mammographic DA, while adulthood adiposity increased NDA. Later menarche had an effect of increasing DA and PD, but when accounting for childhood adiposity, this effect attenuated to the null. DA and PD had a risk-increasing effect on breast cancer across all subtypes. The MD single-nucleotide polymorphism (SNP) estimates were extremely heterogeneous, and examination of the SNPs suggested different mechanisms may be linking MD and breast cancer. Finally, MR mediation analysis estimated that 56% (95% CIs [32% - 79%]) of the childhood adiposity effect on breast cancer risk was mediated via DA. In this work, we sought to disentangle the relationship between factors affecting MD and breast cancer. We showed that higher childhood adiposity decreases mammographic DA, which subsequently leads to reduced breast cancer risk. Understanding this mechanism is of great importance for identifying potential targets of intervention, since advocating weight gain in childhood would not be recommended.

5.
BMC Public Health ; 23(1): 1644, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37641019

RESUMO

BACKGROUND: Multimorbidity, typically defined as having two or more long-term health conditions, is associated with reduced wellbeing and life expectancy. Understanding the determinants of multimorbidity, including whether they are causal, may help with the design and prioritisation of prevention interventions. This study seeks to assess the causality of education, BMI, smoking and alcohol as determinants of multimorbidity, and the degree to which BMI, smoking and alcohol mediate differences in multimorbidity by level of education. METHODS: Participants were 181,214 females and 155,677 males, mean ages 56.7 and 57.1 years respectively, from UK Biobank. We used a Mendelian randomization design; an approach that uses genetic variants as instrumental variables to interrogate causality. RESULTS: The prevalence of multimorbidity was 55.1%. Mendelian randomization suggests that lower education, higher BMI and higher levels of smoking causally increase the risk of multimorbidity. For example, one standard deviation (equivalent to 5.1 years) increase in genetically-predicted years of education decreases the risk of multimorbidity by 9.0% (95% CI: 6.5 to 11.4%). A 5 kg/m2 increase in genetically-predicted BMI increases the risk of multimorbidity by 9.2% (95% CI: 8.1 to 10.3%) and a one SD higher lifetime smoking index increases the risk of multimorbidity by 6.8% (95% CI: 3.3 to 10.4%). Evidence for a causal effect of genetically-predicted alcohol consumption on multimorbidity was less strong; an increase of 5 units of alcohol per week increases the risk of multimorbidity by 1.3% (95% CI: 0.2 to 2.5%). The proportions of the association between education and multimorbidity explained by BMI and smoking are 20.4% and 17.6% respectively. Collectively, BMI and smoking account for 31.8% of the educational inequality in multimorbidity. CONCLUSIONS: Education, BMI, smoking and alcohol consumption are intervenable causal risk factors for multimorbidity. Furthermore, BMI and lifetime smoking make a considerable contribution to the generation of educational inequalities in multimorbidity. Public health interventions that improve population-wide levels of these risk factors are likely to reduce multimorbidity and inequalities in its occurrence.


Assuntos
Bancos de Espécimes Biológicos , Multimorbidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Causalidade , Escolaridade , Etanol , Reino Unido/epidemiologia , Análise da Randomização Mendeliana
6.
Eur J Epidemiol ; 38(7): 765-769, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37156976

RESUMO

Lifecourse Mendelian randomization is a causal inference technique which harnesses genetic variants with time-varying effects to develop insight into the influence of age-dependent lifestyle factors on disease risk. Here, we apply this approach to evaluate whether childhood body size has a direct consequence on 8 major disease endpoints by analysing parental history data from the UK Biobank study.Our findings suggest that, whilst childhood body size increases later risk of outcomes such as heart disease (odds ratio (OR) = 1.15, 95% CI = 1.07 to 1.23, P = 7.8 × 10- 5) and diabetes (OR = 1.43, 95% CI = 1.31 to 1.56, P = 9.4 × 10- 15) based on parental history data, these findings are likely attributed to a sustained influence of being overweight for many years over the lifecourse. Likewise, we found evidence that remaining overweight throughout the lifecourse increases risk of lung cancer, which was partially mediated by lifetime smoking index. In contrast, using parental history data provided evidence that being overweight in childhood may have a protective effect on risk of breast cancer (OR = 0.87, 95% CI = 0.78 to 0.97, P = 0.01), corroborating findings from observational studies and large-scale genetic consortia.Large-scale family disease history data can provide a complementary source of evidence for epidemiological studies to exploit, particularly given that they are likely more robust to sources of selection bias (e.g. survival bias) compared to conventional case control studies. Leveraging these data using approaches such as lifecourse Mendelian randomization can help elucidate additional layers of evidence to dissect age-dependent effects on disease risk.


Assuntos
Neoplasias da Mama , Sobrepeso , Humanos , Feminino , Fatores de Risco , Sobrepeso/epidemiologia , Sobrepeso/genética , Análise da Randomização Mendeliana/métodos , Fumar , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único
7.
PLoS Med ; 20(1): e1003988, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36595504

RESUMO

BACKGROUND: Prostate cancer (PrCa) is the second most prevalent malignancy in men worldwide. Observational studies have linked the use of low-density lipoprotein cholesterol (LDL-c) lowering therapies with reduced risk of PrCa, which may potentially be attributable to confounding factors. In this study, we performed a drug target Mendelian randomisation (MR) analysis to evaluate the association of genetically proxied inhibition of LDL-c-lowering drug targets on risk of PrCa. METHODS AND FINDINGS: Single-nucleotide polymorphisms (SNPs) associated with LDL-c (P < 5 × 10-8) from the Global Lipids Genetics Consortium genome-wide association study (GWAS) (N = 1,320,016) and located in and around the HMGCR, NPC1L1, and PCSK9 genes were used to proxy the therapeutic inhibition of these targets. Summary-level data regarding the risk of total, advanced, and early-onset PrCa were obtained from the PRACTICAL consortium. Validation analyses were performed using genetic instruments from an LDL-c GWAS conducted on male UK Biobank participants of European ancestry (N = 201,678), as well as instruments selected based on liver-derived gene expression and circulation plasma levels of targets. We also investigated whether putative mediators may play a role in findings for traits previously implicated in PrCa risk (i.e., lipoprotein a (Lp(a)), body mass index (BMI), and testosterone). Applying two-sample MR using the inverse-variance weighted approach provided strong evidence supporting an effect of genetically proxied inhibition of PCSK9 (equivalent to a standard deviation (SD) reduction in LDL-c) on lower risk of total PrCa (odds ratio (OR) = 0.85, 95% confidence interval (CI) = 0.76 to 0.96, P = 9.15 × 10-3) and early-onset PrCa (OR = 0.70, 95% CI = 0.52 to 0.95, P = 0.023). Genetically proxied HMGCR inhibition provided a similar central effect estimate on PrCa risk, although with a wider 95% CI (OR = 0.83, 95% CI = 0.62 to 1.13, P = 0.244), whereas genetically proxied NPC1L1 inhibition had an effect on higher PrCa risk with a 95% CI that likewise included the null (OR = 1.34, 95% CI = 0.87 to 2.04, P = 0.180). Analyses using male-stratified instruments provided consistent results. Secondary MR analyses supported a genetically proxied effect of liver-specific PCSK9 expression (OR = 0.90 per SD reduction in PCSK9 expression, 95% CI = 0.86 to 0.95, P = 5.50 × 10-5) and circulating plasma levels of PCSK9 (OR = 0.93 per SD reduction in PCSK9 protein levels, 95% CI = 0.87 to 0.997, P = 0.04) on PrCa risk. Colocalization analyses identified strong evidence (posterior probability (PPA) = 81.3%) of a shared genetic variant (rs553741) between liver-derived PCSK9 expression and PrCa risk, whereas weak evidence was found for HMGCR (PPA = 0.33%) and NPC1L1 expression (PPA = 0.38%). Moreover, genetically proxied PCSK9 inhibition was strongly associated with Lp(a) levels (Beta = -0.08, 95% CI = -0.12 to -0.05, P = 1.00 × 10-5), but not BMI or testosterone, indicating a possible role for Lp(a) in the biological mechanism underlying the association between PCSK9 and PrCa. Notably, we emphasise that our estimates are based on a lifelong exposure that makes direct comparisons with trial results challenging. CONCLUSIONS: Our study supports a strong association between genetically proxied inhibition of PCSK9 and a lower risk of total and early-onset PrCa, potentially through an alternative mechanism other than the on-target effect on LDL-c. Further evidence from clinical studies is needed to confirm this finding as well as the putative mediatory role of Lp(a).


Assuntos
Pró-Proteína Convertase 9 , Neoplasias da Próstata , Humanos , Masculino , Pró-Proteína Convertase 9/genética , Estudo de Associação Genômica Ampla , LDL-Colesterol , Polimorfismo de Nucleotídeo Único , Neoplasias da Próstata/genética , Testosterona , Análise da Randomização Mendeliana
8.
BMC Med ; 21(1): 5, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36600297

RESUMO

BACKGROUND: Observational studies have linked childhood obesity with elevated risk of colorectal cancer; however, it is unclear if this association is causal or independent from the effects of obesity in adulthood on colorectal cancer risk. METHODS: We conducted Mendelian randomization (MR) analyses to investigate potential causal relationships between self-perceived body size (thinner, plumper, or about average) in early life (age 10) and measured body mass index in adulthood (mean age 56.5) with risk of colorectal cancer. The total and independent effects of body size exposures were estimated using univariable and multivariable MR, respectively. Summary data were obtained from a genome-wide association study of 453,169 participants in UK Biobank for body size and from a genome-wide association study meta-analysis of three colorectal cancer consortia of 125,478 participants. RESULTS: Genetically predicted early life body size was estimated to increase odds of colorectal cancer (odds ratio [OR] per category change: 1.12, 95% confidence interval [CI]: 0.98-1.27), with stronger results for colon cancer (OR: 1.16, 95% CI: 1.00-1.35), and distal colon cancer (OR: 1.25, 95% CI: 1.04-1.51). After accounting for adult body size using multivariable MR, effect estimates for early life body size were attenuated towards the null for colorectal cancer (OR: 0.97, 95% CI: 0.77-1.22) and colon cancer (OR: 0.97, 95% CI: 0.76-1.25), while the estimate for distal colon cancer was of similar magnitude but more imprecise (OR: 1.27, 95% CI: 0.90-1.77). Genetically predicted adult life body size was estimated to increase odds of colorectal (OR: 1.27, 95% CI: 1.03, 1.57), colon (OR: 1.32, 95% CI: 1.05, 1.67), and proximal colon (OR: 1.57, 95% CI: 1.21, 2.05). CONCLUSIONS: Our findings suggest that the positive association between early life body size and colorectal cancer risk is likely due to large body size retainment into adulthood.


Assuntos
Neoplasias do Colo , Obesidade Infantil , Adulto , Humanos , Criança , Pessoa de Meia-Idade , Adiposidade/genética , Fatores de Risco , Análise da Randomização Mendeliana , Estudo de Associação Genômica Ampla , Índice de Massa Corporal , Polimorfismo de Nucleotídeo Único
9.
Br J Cancer ; 128(4): 618-625, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36434155

RESUMO

BACKGROUND: Body mass index (BMI) is known to influence the risk of various site-specific cancers, however, dissecting which subcomponents of this heterogenous risk factor are predominantly responsible for driving disease effects has proven difficult to establish. We have leveraged tissue-specific gene expression to separate the effects of distinct phenotypes underlying BMI on the risk of seven site-specific cancers. METHODS: SNP-exposure estimates were weighted in a multivariable Mendelian randomisation analysis by their evidence for colocalization with subcutaneous adipose- and brain-tissue-derived gene expression using a recently developed methodology. RESULTS: Our results provide evidence that brain-tissue-derived BMI variants are predominantly responsible for driving the genetically predicted effect of BMI on lung cancer (OR: 1.17; 95% CI: 1.01-1.36; P = 0.03). Similar findings were identified when analysing cigarettes per day as an outcome (Beta = 0.44; 95% CI: 0.26-0.61; P = 1.62 × 10-6), highlighting a possible shared aetiology or mediator effect between brain-tissue BMI, smoking and lung cancer. Our results additionally suggest that adipose-tissue-derived BMI variants may predominantly drive the effect of BMI and increased risk for endometrial cancer (OR: 1.71; 95% CI: 1.07-2.74; P = 0.02), highlighting a putatively important role in the aetiology of endometrial cancer. CONCLUSIONS: The study provides valuable insight into the divergent underlying pathways between BMI and the risk of site-specific cancers.


Assuntos
Neoplasias do Endométrio , Neoplasias Pulmonares , Humanos , Feminino , Índice de Massa Corporal , Fatores de Risco , Obesidade/complicações , Neoplasias do Endométrio/genética , Neoplasias Pulmonares/complicações , Polimorfismo de Nucleotídeo Único , Estudo de Associação Genômica Ampla
10.
Elife ; 112022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36219204

RESUMO

Background: Polygenic scores (PGS) are becoming an increasingly popular approach to predict complex disease risk, although they also hold the potential to develop insight into the molecular profiles of patients with an elevated genetic predisposition to disease. Methods: We sought to construct an atlas of associations between 125 different PGS derived using results from genome-wide association studies and 249 circulating metabolites in up to 83,004 participants from the UK Biobank. Results: As an exemplar to demonstrate the value of this atlas, we conducted a hypothesis-free evaluation of all associations with glycoprotein acetyls (GlycA), an inflammatory biomarker. Using bidirectional Mendelian randomization, we find that the associations highlighted likely reflect the effect of risk factors, such as adiposity or liability towards smoking, on systemic inflammation as opposed to the converse direction. Moreover, we repeated all analyses in our atlas within age strata to investigate potential sources of collider bias, such as medication usage. This was exemplified by comparing associations between lipoprotein lipid profiles and the coronary artery disease PGS in the youngest and oldest age strata, which had differing proportions of individuals undergoing statin therapy. Lastly, we generated all PGS-metabolite associations stratified by sex and separately after excluding 13 established lipid-associated loci to further evaluate the robustness of findings. Conclusions: We envisage that the atlas of results constructed in our study will motivate future hypothesis generation and help prioritize and deprioritize circulating metabolic traits for in-depth investigations. All results can be visualized and downloaded at http://mrcieu.mrsoftware.org/metabolites_PRS_atlas. Funding: This work is supported by funding from the Wellcome Trust, the British Heart Foundation, and the Medical Research Council Integrative Epidemiology Unit.


Assuntos
Estudo de Associação Genômica Ampla , Inibidores de Hidroximetilglutaril-CoA Redutases , Biomarcadores , Predisposição Genética para Doença , Humanos , Lipídeos , Herança Multifatorial
11.
BMC Med ; 20(1): 245, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35948913

RESUMO

BACKGROUND: Interleukin 6 (IL-6) signaling is being investigated as a therapeutic target for atherosclerotic cardiovascular disease (CVD). While changes in circulating high-sensitivity C-reactive protein (hsCRP) are used as a marker of IL-6 signaling, it is not known whether there is effect heterogeneity in relation to baseline hsCRP levels or other cardiovascular risk factors. The aim of this study was to explore the association of genetically predicted IL-6 signaling with CVD risk across populations stratified by baseline hsCRP levels and cardiovascular risk factors. METHODS: Among 397,060 White British UK Biobank participants without known CVD at baseline, we calculated a genetic risk score for IL-6 receptor (IL-6R)-mediated signaling, composed of 26 variants at the IL6R gene locus. We then applied linear and non-linear Mendelian randomization analyses exploring associations with a combined endpoint of incident coronary artery disease, ischemic stroke, peripheral artery disease, aortic aneurysm, and cardiovascular death stratifying by baseline hsCRP levels and cardiovascular risk factors. RESULTS: The study participants (median age 59 years, 53.9% females) were followed-up for a median of 8.8 years, over which time a total of 46,033 incident cardiovascular events occurred. Genetically predicted IL-6R-mediated signaling activity was associated with higher CVD risk (hazard ratio per 1-mg/dL increment in absolute hsCRP levels: 1.11, 95% CI: 1.06-1.17). The increase in CVD risk was linearly related to baseline absolute hsCRP levels. There was no evidence of heterogeneity in the association of genetically predicted IL-6R-mediated signaling with CVD risk when stratifying the population by sex, age, body mass index, estimated glomerular filtration rate, or systolic blood pressure, but there was evidence of greater associations in individuals with low-density lipoprotein cholesterol ≥ 160 mg/dL. CONCLUSIONS: Any benefit of inhibiting IL-6 signaling for CVD risk reduction is likely to be proportional to absolute reductions in hsCRP levels. Therapeutic inhibition of IL-6 signaling for CVD risk reduction should therefore prioritize those individuals with the highest baseline levels of hsCRP.


Assuntos
Proteína C-Reativa , Doenças Cardiovasculares , Biomarcadores , Proteína C-Reativa/metabolismo , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/genética , LDL-Colesterol , Feminino , Humanos , Interleucina-6/genética , Masculino , Pessoa de Meia-Idade , Fatores de Risco
12.
Lancet Reg Health Eur ; 21: 100457, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35832062

RESUMO

Background: The direct effects of general adiposity (body mass index (BMI)) and central adiposity (waist-to-hip-ratio (WHR)) on circulating lipoproteins, lipids, and metabolites are unknown. Methods: We used new metabolic data from UK Biobank (N=109,532, a five-fold higher N over previous studies). EDTA-plasma was used to quantify 249 traits with nuclear-magnetic-resonance spectroscopy including subclass-specific lipoprotein concentrations and lipid content, plus pre-glycemic and inflammatory metabolites. We used univariable and multivariable two-stage least-squares regression models with genetic risk scores for BMI and WHR as instruments to estimate total (unadjusted) and direct (mutually-adjusted) effects of BMI and WHR on metabolic traits; plus effects on statin use and interaction by sex, statin use, and age (proxy for medication use). Findings: Higher BMI decreased apolipoprotein B and low-density lipoprotein cholesterol (LDL-C) before and after WHR-adjustment, whilst BMI increased triglycerides only before WHR-adjustment. These effects of WHR were larger and BMI-independent. Direct effects differed markedly by sex, e.g., triglycerides increased only with BMI among men, and only with WHR among women. Adiposity measures increased statin use and showed metabolic effects which differed by statin use and age. Among the youngest (38-53y, statins-5%), BMI and WHR (per-SD) increased LDL-C (total effects: 0.04-SD, 95%CI=-0.01,0.08 and 0.10-SD, 95%CI=0.02,0.17 respectively), but only WHR directly. Among the oldest (63-73y, statins-29%), BMI and WHR directly lowered LDL-C (-0.19-SD, 95%CI=-0.27,-0.11 and -0.05-SD, 95%CI=-0.16,0.06 respectively). Interpretation: Excess adiposity likely raises atherogenic lipid and metabolite levels exclusively via adiposity stored centrally, particularly among women. Apparent effects of adiposity on lowering LDL-C are likely explained by an effect of adiposity on statin use. Funding: UK Medical Research Council; British Heart Foundation; Novo Nordisk; National Institute for Health Research; Wellcome Trust; Cancer Research UK.

13.
PLoS Genet ; 18(7): e1010290, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35849575

RESUMO

Mendelian Randomisation (MR) is a powerful tool in epidemiology that can be used to estimate the causal effect of an exposure on an outcome in the presence of unobserved confounding, by utilising genetic variants as instrumental variables (IVs) for the exposure. The effect estimates obtained from MR studies are often interpreted as the lifetime effect of the exposure in question. However, the causal effects of some exposures are thought to vary throughout an individual's lifetime with periods during which an exposure has a greater effect on a particular outcome. Multivariable MR (MVMR) is an extension of MR that allows for multiple, potentially highly related, exposures to be included in an MR estimation. MVMR estimates the direct effect of each exposure on the outcome conditional on all the other exposures included in the estimation. We explore the use of MVMR to estimate the direct effect of a single exposure at different time points in an individual's lifetime on an outcome. We use simulations to illustrate the interpretation of the results from such analyses and the key assumptions required. We show that causal effects at different time periods can be estimated through MVMR when the association between the genetic variants used as instruments and the exposure measured at those time periods varies. However, this estimation will not necessarily identify exact time periods over which an exposure has the most effect on the outcome. Prior knowledge regarding the biological basis of exposure trajectories can help interpretation. We illustrate the method through estimation of the causal effects of childhood and adult BMI on C-Reactive protein and smoking behaviour.


Assuntos
Variação Genética , Análise da Randomização Mendeliana , Causalidade , Análise da Randomização Mendeliana/métodos
14.
J Natl Cancer Inst ; 114(9): 1296-1300, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-35438160

RESUMO

It is unclear if body weight in early life affects cancer risk independently of adult body weight. To investigate this question for 6 obesity-related cancers, we performed univariable and multivariable analyses using 1) Mendelian randomization (MR) analysis and 2) longitudinal analyses in prospective cohorts. Both the MR and longitudinal analyses indicated that larger early life body size was associated with higher risk of endometrial (odds ratioMR = 1.61, 95% confidence interval = 1.23 to 2.11) and kidney (odds ratioMR = 1.40, 95% confidence interval = 1.09 to 1.80) cancer. These associations were attenuated after accounting for adult body size in both the MR and cohort analyses. Early life body mass index (BMI) was not consistently associated with the other investigated cancers. The lack of clear independent risk associations suggests that early life BMI influences endometrial and kidney cancer risk mainly through pathways that are common with adult BMI.


Assuntos
Análise da Randomização Mendeliana , Neoplasias , Adulto , Índice de Massa Corporal , Tamanho Corporal , Estudos de Coortes , Estudo de Associação Genômica Ampla , Humanos , Neoplasias/etiologia , Neoplasias/genética , Obesidade/complicações , Obesidade/epidemiologia , Obesidade/genética , Estudos Prospectivos
15.
Commun Biol ; 5(1): 337, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35396499

RESUMO

Studies suggest that adiposity in childhood may reduce the risk of breast cancer in later life. The biological mechanism underlying this effect is unclear but is likely to be independent of body size in adulthood. Using a Mendelian randomization framework, we investigate 18 hypothesised mediators of the protective effect of childhood adiposity on later-life breast cancer, including hormonal, reproductive, physical, and glycaemic traits. Our results indicate that, while most of the hypothesised mediators are affected by childhood adiposity, only IGF-1 (OR: 1.08 [1.03: 1.15]), testosterone (total/free/bioavailable ~ OR: 1.12 [1.05: 1.20]), age at menopause (OR: 1.05 [1.03: 1.07]), and age at menarche (OR: 0.92 [0.86: 0.99], direct effect) influence breast cancer risk. However, multivariable Mendelian randomization analysis shows that the protective effect of childhood body size remains unaffected when accounting for these traits (ORs: 0.59-0.67). This suggests that none of the investigated potential mediators strongly contribute to the protective effect of childhood adiposity on breast cancer risk individually. It is plausible, however, that several related traits could collectively mediate the effect when analysed together, and this work provides a compelling foundation for investigating other mediating pathways in future studies.


Assuntos
Neoplasias da Mama , Obesidade Infantil , Adiposidade/genética , Adulto , Índice de Massa Corporal , Neoplasias da Mama/etiologia , Neoplasias da Mama/genética , Feminino , Humanos , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Fatores de Risco
16.
Cancer Causes Control ; 33(5): 631-652, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35274198

RESUMO

Dietary factors are assumed to play an important role in cancer risk, apparent in consensus recommendations for cancer prevention that promote nutritional changes. However, the evidence in this field has been generated predominantly through observational studies, which may result in biased effect estimates because of confounding, exposure misclassification, and reverse causality. With major geographical differences and rapid changes in cancer incidence over time, it is crucial to establish which of the observational associations reflect causality and to identify novel risk factors as these may be modified to prevent the onset of cancer and reduce its progression. Mendelian randomization (MR) uses the special properties of germline genetic variation to strengthen causal inference regarding potentially modifiable exposures and disease risk. MR can be implemented through instrumental variable (IV) analysis and, when robustly performed, is generally less prone to confounding, reverse causation and measurement error than conventional observational methods and has different sources of bias (discussed in detail below). It is increasingly used to facilitate causal inference in epidemiology and provides an opportunity to explore the effects of nutritional exposures on cancer incidence and progression in a cost-effective and timely manner. Here, we introduce the concept of MR and discuss its current application in understanding the impact of nutritional factors (e.g., any measure of diet and nutritional intake, circulating biomarkers, patterns, preference or behaviour) on cancer aetiology and, thus, opportunities for MR to contribute to the development of nutritional recommendations and policies for cancer prevention. We provide applied examples of MR studies examining the role of nutritional factors in cancer to illustrate how this method can be used to help prioritise or deprioritise the evaluation of specific nutritional factors as intervention targets in randomised controlled trials. We describe possible biases when using MR, and methodological developments aimed at investigating and potentially overcoming these biases when present. Lastly, we consider the use of MR in identifying causally relevant nutritional risk factors for various cancers in different regions across the world, given notable geographical differences in some cancers. We also discuss how MR results could be translated into further research and policy. We conclude that findings from MR studies, which corroborate those from other well-conducted studies with different and orthogonal biases, are poised to substantially improve our understanding of nutritional influences on cancer. For such corroboration, there is a requirement for an interdisciplinary and collaborative approach to investigate risk factors for cancer incidence and progression.


Assuntos
Análise da Randomização Mendeliana , Neoplasias , Causalidade , Humanos , Análise da Randomização Mendeliana/métodos , Neoplasias/etiologia , Neoplasias/genética , Estado Nutricional , Fatores de Risco
17.
Elife ; 112022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35346416

RESUMO

Background: Epigenetic clocks have been associated with cancer risk in several observational studies. Nevertheless, it is unclear whether they play a causal role in cancer risk or if they act as a non-causal biomarker. Methods: We conducted a two-sample Mendelian randomization (MR) study to examine the genetically predicted effects of epigenetic age acceleration as measured by HannumAge (nine single-nucleotide polymorphisms (SNPs)), Horvath Intrinsic Age (24 SNPs), PhenoAge (11 SNPs), and GrimAge (4 SNPs) on multiple cancers (i.e. breast, prostate, colorectal, ovarian and lung cancer). We obtained genome-wide association data for biological ageing from a meta-analysis (N = 34,710), and for cancer from the UK Biobank (N cases = 2671-13,879; N controls = 173,493-372,016), FinnGen (N cases = 719-8401; N controls = 74,685-174,006) and several international cancer genetic consortia (N cases = 11,348-122,977; N controls = 15,861-105,974). Main analyses were performed using multiplicative random effects inverse variance weighted (IVW) MR. Individual study estimates were pooled using fixed effect meta-analysis. Sensitivity analyses included MR-Egger, weighted median, weighted mode and Causal Analysis using Summary Effect Estimates (CAUSE) methods, which are robust to some of the assumptions of the IVW approach. Results: Meta-analysed IVW MR findings suggested that higher GrimAge acceleration increased the risk of colorectal cancer (OR = 1.12 per year increase in GrimAge acceleration, 95% CI 1.04-1.20, p = 0.002). The direction of the genetically predicted effects was consistent across main and sensitivity MR analyses. Among subtypes, the genetically predicted effect of GrimAge acceleration was greater for colon cancer (IVW OR = 1.15, 95% CI 1.09-1.21, p = 0.006), than rectal cancer (IVW OR = 1.05, 95% CI 0.97-1.13, p = 0.24). Results were less consistent for associations between other epigenetic clocks and cancers. Conclusions: GrimAge acceleration may increase the risk of colorectal cancer. Findings for other clocks and cancers were inconsistent. Further work is required to investigate the potential mechanisms underlying the results. Funding: FMB was supported by a Wellcome Trust PhD studentship in Molecular, Genetic and Lifecourse Epidemiology (224982/Z/22/Z which is part of grant 218495/Z/19/Z). KKT was supported by a Cancer Research UK (C18281/A29019) programme grant (the Integrative Cancer Epidemiology Programme) and by the Hellenic Republic's Operational Programme 'Competitiveness, Entrepreneurship & Innovation' (OΠΣ 5047228). PH was supported by Cancer Research UK (C18281/A29019). RMM was supported by the NIHR Biomedical Research Centre at University Hospitals Bristol and Weston NHS Foundation Trust and the University of Bristol and by a Cancer Research UK (C18281/A29019) programme grant (the Integrative Cancer Epidemiology Programme). RMM is a National Institute for Health Research Senior Investigator (NIHR202411). The views expressed are those of the author(s) and not necessarily those of the NIHR or the Department of Health and Social Care. GDS and CLR were supported by the Medical Research Council (MC_UU_00011/1 and MC_UU_00011/5, respectively) and by a Cancer Research UK (C18281/A29019) programme grant (the Integrative Cancer Epidemiology Programme). REM was supported by an Alzheimer's Society project grant (AS-PG-19b-010) and NIH grant (U01 AG-18-018, PI: Steve Horvath). RCR is a de Pass Vice Chancellor's Research Fellow at the University of Bristol.


Have you noticed that some people seem to get older faster than others? Scientists have previously found that a chemical tag on DNA known as DNA methylation can be used to predict an individual's chronological age. However, age predicted using DNA methylation (also known as biological or epigenetic age) does not always perfectly correspond to chronological age. Indeed, some people's biological age is higher than their years, while other people's is lower. When an individual's biological age is higher than their chronological age, they are said to be experiencing 'epigenetic age acceleration'. This type of accelerated ageing, which can be measured with 'epigenetic clocks' based on DNA methylation, has been associated with several adverse health outcomes, including cancer. This means that epigenetic clocks may improve our ability to predict cancer risk and detect cancer early. However, it is still unclear whether accelerated biological ageing causes cancer, or whether it simply correlates with the disease. Morales-Berstein et al. wanted to investigate whether epigenetic age acceleration, as measured by epigenetic clocks, plays a role in the development of several cancers. To do so, they used an approach known as Mendelian randomization. Using genetic variants as natural experiments, they studied the effect of different measures of epigenetic age acceleration on cancer risk. Their work focused on five types of cancer: breast, colorectal, prostate, ovarian and lung cancer. They used genetic association data from people of European ancestry to determine whether genetic variants that are strongly associated with accelerated ageing are also strongly associated with cancer. The results showed that one of the DNA methylation markers used as an estimate of biological ageing could be directly related to the risk of developing colorectal cancer. This work provides new insights into the relationship between markers of biological ageing and cancer. Similar relationships should also be studied in other groups of people and for other cancer sites. The results suggest that reversing biological ageing by altering DNA methylation could prevent or delay the development of colorectal cancer.


Assuntos
Neoplasias Colorretais , Análise da Randomização Mendeliana , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/genética , Epigênese Genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Polimorfismo de Nucleotídeo Único
18.
PLoS Med ; 19(2): e1003897, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35113855

RESUMO

BACKGROUND: Epidemiological studies have reported conflicting findings on the potential adverse effects of long-term antihypertensive medication use on cancer risk. Naturally occurring variation in genes encoding antihypertensive drug targets can be used as proxies for these targets to examine the effect of their long-term therapeutic inhibition on disease outcomes. METHODS AND FINDINGS: We performed a mendelian randomization analysis to examine the association between genetically proxied inhibition of 3 antihypertensive drug targets and risk of 4 common cancers (breast, colorectal, lung, and prostate). Single-nucleotide polymorphisms (SNPs) in ACE, ADRB1, and SLC12A3 associated (P < 5.0 × 10-8) with systolic blood pressure (SBP) in genome-wide association studies (GWAS) were used to proxy inhibition of angiotensin-converting enzyme (ACE), ß-1 adrenergic receptor (ADRB1), and sodium-chloride symporter (NCC), respectively. Summary genetic association estimates for these SNPs were obtained from GWAS consortia for the following cancers: breast (122,977 cases, 105,974 controls), colorectal (58,221 cases, 67,694 controls), lung (29,266 cases, 56,450 controls), and prostate (79,148 cases, 61,106 controls). Replication analyses were performed in the FinnGen consortium (1,573 colorectal cancer cases, 120,006 controls). Cancer GWAS and FinnGen consortia data were restricted to individuals of European ancestry. Inverse-variance weighted random-effects models were used to examine associations between genetically proxied inhibition of these drug targets and risk of cancer. Multivariable mendelian randomization and colocalization analyses were employed to examine robustness of findings to violations of mendelian randomization assumptions. Genetically proxied ACE inhibition equivalent to a 1-mm Hg reduction in SBP was associated with increased odds of colorectal cancer (odds ratio (OR) 1.13, 95% CI 1.06 to 1.22; P = 3.6 × 10-4). This finding was replicated in the FinnGen consortium (OR 1.40, 95% CI 1.02 to 1.92; P = 0.035). There was little evidence of association of genetically proxied ACE inhibition with risk of breast cancer (OR 0.98, 95% CI 0.94 to 1.02, P = 0.35), lung cancer (OR 1.01, 95% CI 0.92 to 1.10; P = 0.93), or prostate cancer (OR 1.06, 95% CI 0.99 to 1.13; P = 0.08). Genetically proxied inhibition of ADRB1 and NCC were not associated with risk of these cancers. The primary limitations of this analysis include the modest statistical power for analyses of drug targets in relation to some less common histological subtypes of cancers examined and the restriction of the majority of analyses to participants of European ancestry. CONCLUSIONS: In this study, we observed that genetically proxied long-term ACE inhibition was associated with an increased risk of colorectal cancer, warranting comprehensive evaluation of the safety profiles of ACE inhibitors in clinical trials with adequate follow-up. There was little evidence to support associations across other drug target-cancer risk analyses, consistent with findings from short-term randomized controlled trials for these medications.


Assuntos
Anti-Hipertensivos/efeitos adversos , Análise da Randomização Mendeliana/métodos , Neoplasias/genética , Peptidil Dipeptidase A/genética , Receptores Adrenérgicos beta 1/genética , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/genética , Feminino , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Neoplasias/induzido quimicamente , Neoplasias/epidemiologia , Polimorfismo de Nucleotídeo Único/efeitos dos fármacos , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , Membro 3 da Família 12 de Carreador de Soluto/genética
19.
Am J Hum Genet ; 108(12): 2259-2270, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34741802

RESUMO

Developing functional insight into the causal molecular drivers of immunological disease is a critical challenge in genomic medicine. Here, we systematically apply Mendelian randomization (MR), genetic colocalization, immune-cell-type enrichment, and phenome-wide association methods to investigate the effects of genetically predicted gene expression on ten immune-associated diseases and four cancer outcomes. Using whole blood-derived estimates for regulatory variants from the eQTLGen consortium (n = 31,684), we constructed genetic risk scores for 10,104 genes. Applying the inverse-variance-weighted MR method transcriptome wide while accounting for linkage disequilibrium structure identified 664 unique genes with evidence of a genetically predicted effect on at least one disease outcome (p < 4.81 × 10-5). We next undertook genetic colocalization to investigate cell-type-specific effects at these loci by using gene expression data derived from 18 types of immune cells. This highlighted many cell-type-dependent effects, such as PRKCQ expression and asthma risk (posterior probability = 0.998), which was T cell specific. Phenome-wide analyses on 311 complex traits and endpoints allowed us to explore shared genetic architecture and prioritize key drivers of disease risk, such as CASP10, which provided evidence of an effect on seven cancer-related outcomes. Our atlas of results can be used to characterize known and novel loci in immune-associated disease and cancer susceptibility, both in terms of elucidating cell-type-dependent effects as well as dissecting shared disease pathways and pervasive pleiotropy. As an exemplar, we have highlighted several key findings in this study, although similar evaluations can be conducted via our interactive web platform.


Assuntos
Medicina Genômica , Doenças do Sistema Imunitário/genética , Neoplasias/genética , Fenômica , Perfilação da Expressão Gênica , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Desequilíbrio de Ligação , Análise da Randomização Mendeliana , Avaliação de Resultados em Cuidados de Saúde , Locos de Características Quantitativas , Fatores de Risco , Transcriptoma
20.
Cancer Epidemiol Biomarkers Prev ; 30(12): 2207-2216, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34583967

RESUMO

BACKGROUND: Circulating lipids and insulin-like growth factor 1 (IGF-I) have been reliably associated with breast cancer. Observational studies suggest an interplay between lipids and IGF-I, however, whether these relationships are causal and if pathways from these phenotypes to breast cancer overlap is unclear. METHODS: Mendelian randomization (MR) was conducted to estimate the relationship between lipids or IGF-I and breast cancer risk using genetic summary statistics for lipids (low-density lipoprotein cholesterol, LDL-C; high-density lipoprotein cholesterol, HDL-C; triglycerides, TGs), IGF-I and breast cancer from GLGC/UKBB (N = 239,119), CHARGE/UKBB (N = 252,547), and Breast Cancer Association Consortium (N = 247,173), respectively. Cross-sectional observational and MR analyses were conducted to assess the bi-directional relationship between lipids and IGF-I in SHIP (N = 3,812) and UKBB (N = 422,389), and using genetic summary statistics from GLGC (N = 188,577) and CHARGE/UKBB (N = 469,872). RESULTS: In multivariable MR (MVMR) analyses, the OR for breast cancer per 1-SD increase in HDL-C and TG was 1.08 [95% confidence interval (CI), 1.04-1.13] and 0.94 (95% CI, 0.89-0.98), respectively. The OR for breast cancer per 1-SD increase in IGF-I was 1.09 (95% CI, 1.04-1.15). MR analyses suggested a bi-directional TG-IGF-I relationship (TG-IGF-I ß per 1-SD: -0.13; 95% CI, -0.23 to -0.04; and IGF-I-TG ß per 1-SD: -0.11; 95% CI, -0.18 to -0.05). There was little evidence for a causal relationship between HDL-C and LDL-C with IGF-I. In MVMR analyses, associations of TG or IGF-I with breast cancer were robust to adjustment for IGF-I or TG, respectively. CONCLUSIONS: Our findings suggest a causal role of HDL-C, TG, and IGF-I in breast cancer. Observational and MR analyses support an interplay between IGF-I and TG; however, MVMR estimates suggest that TG and IGF-I may act independently to influence breast cancer. IMPACT: Our findings should be considered in the development of prevention strategies for breast cancer, where interventions are known to modify circulating lipids and IGF-I.


Assuntos
Neoplasias da Mama/sangue , Fator de Crescimento Insulin-Like I/genética , Triglicerídeos/sangue , Neoplasias da Mama/genética , Causalidade , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Estudos Transversais , Feminino , Estudo de Associação Genômica Ampla , Humanos , Análise da Randomização Mendeliana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA