Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1187563, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600206

RESUMO

Asparagus samples were examined from growing areas of Germany and selected European as well as North, Central and South American countries. Overall, 474 samples were analyzed for Asparagus virus 1 (AV1) using DAS-ELISA. In our survey, 19 AV1 isolates were further characterized. Experimental transmission to 11 species belonging to Aizoaceae, Amarantaceae, Asparagaceae, and Solanaceae succeeded. The ultrastructure of AV1 infection in asparagus has been revealed and has been compared with the one in indicator plants. The cylindrical inclusion (CI) protein, a core factor in viral replication, localized within the cytoplasm and in systemic infections adjacent to the plasmodesmata. The majority of isolates referred to pathotype I (PI). These triggered a hypersensitive resistance in inoculated leaves of Chenopodium spp. and were incapable of infecting Nicotiana spp. Only pathotype II (PII) and pathotype III (PIII) infected Nicotiana benthamiana systemically but differed in their virulence when transmitted to Chenopodium spp. The newly identified PIII generated amorphous inclusion bodies and degraded chloroplasts during systemic infection but not in local lesions of infected Chenopodium spp. PIII probably evolved via recombination in asparagus carrying a mixed infection by PI and PII. Phylogeny of the coat protein region recognized two clusters, which did not overlap with the CI-associated grouping of pathotypes. These results provide evidence for ongoing modular evolution of AV1.

2.
Plants (Basel) ; 11(16)2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-36015469

RESUMO

Tobamoviruses are among the most well-studied plant viruses and yet there is still a lot to uncover about them. On one side of the spectrum, there are damage-causing members of this genus: such as the tobacco mosaic virus (TMV), tomato brown rugose fruit virus (ToBRFV) and cucumber green mottle mosaic virus (CGMMV), on the other side, there are members which cause latent infection in host plants. New technologies, such as high-throughput sequencing (HTS), have enabled us to discover viruses from asymptomatic plants, viruses in mixed infections where the disease etiology cannot be attributed to a single entity and more and more researchers a looking at non-crop plants to identify alternative virus reservoirs, leading to new virus discoveries. However, the diversity of these interactions in the virosphere and the involvement of multiple viruses in a single host is still relatively unclear. For such host-virus interactions in wild plants, symptoms are not always linked with the virus titer. In this review, we refer to latent infection as asymptomatic infection where plants do not suffer despite systemic infection. Molecular mechanisms related to latent behavior of tobamoviruses are unknown. We will review different studies which support different theories behind latency.

3.
J Gen Virol ; 101(10): 1025-1026, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32940596

RESUMO

Caulimoviridae is a family of non-enveloped reverse-transcribing plant viruses with non-covalently closed circular dsDNA genomes of 7.1-9.8 kbp in the order Ortervirales. They infect a wide range of monocots and dicots. Some viruses cause economically important diseases of tropical and subtropical crops. Transmission occurs through insect vectors (aphids, mealybugs, leafhoppers, lace bugs) and grafting. Activation of infectious endogenous viral elements occurs in Musa balbisiana, Petunia hybrida and Nicotiana edwardsonii. However, most endogenous caulimovirids are not infectious. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Caulimoviridae, which is available at ictv.global/report/caulimoviridae.


Assuntos
Caulimoviridae , Caulimoviridae/classificação , Caulimoviridae/fisiologia , Caulimoviridae/ultraestrutura , Genoma Viral , Plantas/virologia , Replicação Viral
4.
Virol J ; 16(1): 89, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31277670

RESUMO

A tenuivirus, referred to here as JKI 29327, was isolated from a black medic (Medicago lupulina) plant collected in Austria. The virus was mechanically transmitted to Nicotiana benthamiana, M. lupulina, M. sativa, Pisum sativum and Vicia faba. The complete genome was determined by high throughput sequencing. The genome of JKI 29327 consists of eight RNA segments closely related to those of melon chlorotic spot virus (MeCSV) isolate E11-018 from France. Since segments RNA 7 and 8 of JKI 29327 are shorter, its genome is slightly smaller (by 247 nts) than that of E11-018. Pairwise comparisons between the predicted virus proteins of JKI 29327 and their homologues in E11-018 showed aa identities ranging from 80.6 to 97.2%. Plants infected with E11-081 gave intermediate DAS-ELISA reactions with polyclonal antibodies to JKI 29327. Since JKI 29327 and E11-018 appear to be closely related both serologically and genetically, we propose to regard JKI 29327 as the black medic strain of MeCSV. To our knowledge, JKI 29327 represents the second tenuivirus identified from a dicotyledonous plant. Serological and molecular diagnostic methods were developed for future detection.


Assuntos
Cucurbitaceae/virologia , Doenças das Plantas/virologia , Tenuivirus/genética , Tenuivirus/isolamento & purificação , Áustria , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Pisum sativum/virologia , Filogenia , RNA Viral/genética , Nicotiana/virologia , Vicia faba/virologia , Proteínas Virais/genética
5.
Virol J ; 16(1): 70, 2019 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-31133023

RESUMO

A novel nepovirus was identified and characterised from caraway, and tentatively named caraway yellows virus (CawYV). Tubular structures with isomeric virus particles typical for nepoviruses were observed in infected tissues by electron microscopy. The whole genome of CawYV was identified by high throughput sequencing (HTS). It consists of two segments with 8026 nt for RNA1 and 6405 nt for RNA2, excluding the poly(A) tails. CawYV-RNA1 shared closest nt identity to peach rosette mosaic virus (PRMV) with 63%, while RNA2 shared 41.5% with blueberry latent spherical virus (BLSV). The amino acid sequences of the CawYV protease-polymerase (Pro-Pol) and capsid protein (CP) regions share the highest identities with those of the subgroup C nepoviruses. The Pro-Pol region shared highest aa identity with PRMV (80.1%), while the CP region shared 39.6% to soybean latent spherical virus. Phylogenetic analysis of the CawYV-Pro-Pol and -CP aa sequences provided additional evidence of their association with nepoviruses subgroup C. Based on particle morphology, genomic organization and phylogenetic analyses, we propose CawYV as a novel species within the genus Nepovirus subgroup C.


Assuntos
Carum/virologia , Nepovirus/classificação , Doenças das Plantas/virologia , Folhas de Planta/virologia , Proteínas Virais/genética , Proteínas do Capsídeo/genética , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Nepovirus/isolamento & purificação , Filogenia , RNA Viral/genética , Homologia de Sequência de Aminoácidos
6.
J Gen Virol ; 100(2): 308-320, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30667354

RESUMO

Celery latent virus (CeLV) is an incompletely described plant virus known to be sap and seed transmissible and to possess flexuous filamentous particles measuring about 900 nm in length, suggesting it as a possible member of the family Potyviridae. Here, an Italian isolate of CeLV was transmitted by sap to a number of host plants and shown to have a single-stranded and monopartite RNA genome being 11 519 nucleotides (nts) in size and possessing some unusual features. The RNA contains a large open reading frame (ORF) that is flanked by a short 5' untranslated region (UTR) of 13 nt and a 3' UTR consisting of 586 nt that is not polyadenylated. CeLV RNA shares nt sequence identity of only about 40 % with other members of the Potyviridae (potyvirids). The CeLV polyprotein is notable in that it starts with a signal peptide, has a putative P3N-PIPO ORF and shares low aa sequence identity (about 18 %) with other potyvirids. Although potential cleavage sites were not identified for the N-terminal two-thirds of the polyprotein, the latter possesses a number of sequence motifs, the identity and position of which are characteristic of other potyvirids. Attempts at constructing an infectious full-length cDNA clone of CeLV were successful following Rhizobium radiobacter infiltration of Nicotiana benthamiana and Apium graveolens. CeLV appears to have the largest genome of all known potyvirids and some unique genome features that may warrant the creation of a new genus, for which we propose the name 'celavirus'.


Assuntos
Apium/virologia , DNA Complementar , Potyviridae/crescimento & desenvolvimento , Potyviridae/genética , Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , Agrobacterium tumefaciens/genética , Vetores Genéticos , Itália , Fases de Leitura Aberta , Doenças das Plantas/virologia , Poliproteínas/genética , Potyviridae/isolamento & purificação , RNA Viral/genética , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Nicotiana , Proteínas Virais/genética
8.
Nat Plants ; 2(6): 16074, 2016 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-27255838

RESUMO

Petunia hybrida is a popular bedding plant that has a long history as a genetic model system. We report the whole-genome sequencing and assembly of inbred derivatives of its two wild parents, P. axillaris N and P. inflata S6. The assemblies include 91.3% and 90.2% coverage of their diploid genomes (1.4 Gb; 2n = 14) containing 32,928 and 36,697 protein-coding genes, respectively. The genomes reveal that the Petunia lineage has experienced at least two rounds of hexaploidization: the older gamma event, which is shared with most Eudicots, and a more recent Solanaceae event that is shared with tomato and other solanaceous species. Transcription factors involved in the shift from bee to moth pollination reside in particularly dynamic regions of the genome, which may have been key to the remarkable diversity of floral colour patterns and pollination systems. The high-quality genome sequences will enhance the value of Petunia as a model system for research on unique biological phenomena such as small RNAs, symbiosis, self-incompatibility and circadian rhythms.


Assuntos
Evolução Molecular , Genoma de Planta , Hibridização Genética , Petunia/genética , Poliploidia
9.
EMBO J ; 22(18): 4836-45, 2003 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-12970195

RESUMO

Infection by an endogenous pararetrovirus using forms of both episomal and chromosomal origin has been demonstrated and characterized, together with evidence that petunia vein clearing virus (PVCV) is a constituent of the Petunia hybrida genome. Our findings allow comparative and direct analysis of horizontally and vertically transmitted virus forms and demonstrate their infectivity using biolistic transformation of a provirus-free petunia species. Some integrants within the genome of P.hybrida are arranged in tandem, allowing direct release of virus by transcription. In addition to known inducers of endogenous pararetroviruses, such as genome hybridization, tissue culture and abiotic stresses, we observed activation of PVCV after wounding. Our data also support the hypothesis that the host plant uses DNA methylation to control the endogenous pararetrovirus.


Assuntos
Petunia/virologia , Vírus de Plantas/genética , Retroviridae/genética , Sequência de Bases , Biolística , Metilação de DNA , Primers do DNA , DNA Viral/genética , Genoma Viral , Fases de Leitura Aberta , Doenças das Plantas/virologia , Provírus/fisiologia , Integração Viral
10.
J Virol Methods ; 107(2): 177-84, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12505632

RESUMO

A number of cases of plant virus sequence integration into host plant genome have been reported. In at least two cases, endogenous pararetrovirus sequences are correlated strongly with subsequent episomal virus infection and there is circumstantial evidence that this also occurs for Petunia vein-clearing virus (PVCV). The detection of viruses is a critical component of plant health and therefore, it is important to have diagnostic procedures that differentiate between the detection of encapsidated viral DNA and homologous sequences in the host genome. PCR-based detection methods targeted at PVCV DNA have been tested and particular attention was paid to design controls that would indicate the existence of host DNA in the reaction. The use of ion-exchange chromatography for the partial purification of plant viruses from other cellular components, including chromosomal DNA, is described. The methods tested for PVCV detection are used to illustrate general principles for the specific detection of virus infections in host plants that carry homologous virus sequences in their genomes.


Assuntos
Vírus de DNA/isolamento & purificação , DNA Viral/análise , Petunia/virologia , Retroviridae/química , Cromatografia por Troca Iônica , DNA de Plantas/análise , Genoma de Planta , Folhas de Planta/química , Vírus de Plantas/isolamento & purificação , Plantas/virologia , Reação em Cadeia da Polimerase/métodos , Retroviridae/genética , Análise de Sequência de DNA , Homologia de Sequência , Integração Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA