Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 13(623): eabf7036, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34878824

RESUMO

Glioblastoma (GBM) is a fatal tumor whose aggressiveness, heterogeneity, poor blood-brain barrier penetration, and resistance to therapy highlight the need for new targets and clinical treatments. A step toward clinical translation includes the eradication of GBM tumor-initiating cells (TICs), responsible for GBM heterogeneity and relapse. By using patient-derived TICs and xenograft orthotopic models, we demonstrated that the selective lysine-specific histone demethylase 1 inhibitor DDP_38003 (LSD1i) is able to penetrate the brain parenchyma in vivo in preclinical models, is well tolerated, and exerts antitumor activity in molecularly different GBMs. LSD1 genetic targeting further strengthens the role of LSD1 in GBM TIC maintenance. GBM TIC plasticity supports their adaptation and survival under a plethora of environmental stresses, including nutrient deficiency and proteostasis perturbation. By mimicking these stresses in vitro, we found that LSD1 inhibition hampers the induction of the activating transcription factor 4 (ATF4), the master regulator of the integrated stress response (ISR). The resulting aberrant ISR sensitizes GBM TICs to stress-induced cell death, hampering tumor aggressiveness. Functionally, LSD1i interferes with LSD1 scaffolding function and prevents its interaction with CREBBP, a critical ATF4 activator. By disrupting the interaction between CREBBP and LSD1-ATF4 axis, LSD1 inhibition prevents GBM TICs from overcoming stress and sustaining GBM progression. The effectiveness of the LSD1 inhibition in preclinical models shown here places a strong rationale toward its clinical translation for GBM treatment.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Fator 4 Ativador da Transcrição/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Histona Desmetilases/metabolismo , Humanos , Recidiva Local de Neoplasia/metabolismo , Células-Tronco Neoplásicas/patologia
2.
Dev Cell ; 56(20): 2841-2855.e8, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34559979

RESUMO

Glioblastoma are heterogeneous tumors composed of highly invasive and highly proliferative clones. Heterogeneity in invasiveness could emerge from discrete biophysical properties linked to specific molecular expression. We identified clones of patient-derived glioma propagating cells that were either highly proliferative or highly invasive and compared their cellular architecture, migratory, and biophysical properties. We discovered that invasiveness was linked to cellular fitness. The most invasive cells were stiffer, developed higher mechanical forces on the substrate, and moved stochastically. The mechano-chemical-induced expression of the formin FMN1 conferred invasive strength that was confirmed in patient samples. Moreover, FMN1 expression was also linked to motility in other cancer and normal cell lines, and its ectopic expression increased fitness parameters. Mechanistically, FMN1 acts from the microtubule lattice and promotes a robust mechanical cohesion, leading to highly invasive motility.


Assuntos
Movimento Celular/fisiologia , Forminas/metabolismo , Glioblastoma/metabolismo , Invasividade Neoplásica/patologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proteínas Fetais/metabolismo , Glioblastoma/patologia , Humanos , Proteínas dos Microfilamentos/metabolismo
3.
Clin Cancer Res ; 25(1): 266-276, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30287549

RESUMO

PURPOSE: Glioblastoma (GBM) is the most common primary brain tumor. The identification of blood biomarkers reflecting the tumor status represents a major unmet need for optimal clinical management of patients with GBM. Their high number in body fluids, their stability, and the presence of many tumor-associated proteins and RNAs make extracellular vesicles potentially optimal biomarkers. Here, we investigated the potential role of plasma extracellular vesicles from patients with GBM for diagnosis and follow-up after treatment and as a prognostic tool. EXPERIMENTAL DESIGN: Plasma from healthy controls (n = 33), patients with GBM (n = 43), and patients with different central nervous system malignancies (n = 25) were collected. Extracellular vesicles were isolated by ultracentrifugation and characterized in terms of morphology by transmission electron microscopy, concentration, and size by nanoparticle tracking analysis, and protein composition by mass spectrometry. An orthotopic mouse model of human GBM confirmed human plasma extracellular vesicle quantifications. Associations between plasma extracellular vesicle concentration and clinicopathologic features of patients with GBM were analyzed. All statistical tests were two-sided. RESULTS: GBM releases heterogeneous extracellular vesicles detectable in plasma. Plasma extracellular vesicle concentration was higher in GBM compared with healthy controls (P < 0.001), brain metastases (P < 0.001), and extra-axial brain tumors (P < 0.001). After surgery, a significant drop in plasma extracellular vesicle concentration was measured (P < 0.001). Plasma extracellular vesicle concentration was also increased in GBM-bearing mice (P < 0.001). Proteomic profiling revealed a GBM-distinctive signature. CONCLUSIONS: Higher extracellular vesicle plasma levels may assist in GBM clinical diagnosis: their reduction after GBM resection, their rise at recurrence, and their protein cargo might provide indications about tumor, therapy response, and monitoring.


Assuntos
Glioblastoma/sangue , Recidiva Local de Neoplasia/sangue , Recidiva Local de Neoplasia/genética , Prognóstico , Animais , Biomarcadores Tumorais/sangue , Linhagem Celular Tumoral , Vesículas Extracelulares/genética , Vesículas Extracelulares/patologia , Vesículas Extracelulares/ultraestrutura , Feminino , Glioblastoma/genética , Glioblastoma/patologia , Xenoenxertos , Humanos , Masculino , Camundongos , Microscopia Eletrônica , Recidiva Local de Neoplasia/patologia , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , Proteoma/genética
4.
Nucleic Acids Res ; 46(8): 3817-3832, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29618087

RESUMO

Histone post-translational modifications (PTMs) generate a complex combinatorial code that regulates gene expression and nuclear functions, and whose deregulation has been documented in different types of cancers. Therefore, the availability of relevant culture models that can be manipulated and that retain the epigenetic features of the tissue of origin is absolutely crucial for studying the epigenetic mechanisms underlying cancer and testing epigenetic drugs. In this study, we took advantage of quantitative mass spectrometry to comprehensively profile histone PTMs in patient tumor tissues, primary cultures and cell lines from three representative tumor models, breast cancer, glioblastoma and ovarian cancer, revealing an extensive and systematic rewiring of histone marks in cell culture conditions, which includes a decrease of H3K27me2/me3, H3K79me1/me2 and H3K9ac/K14ac, and an increase of H3K36me1/me2. While some changes occur in short-term primary cultures, most of them are instead time-dependent and appear only in long-term cultures. Remarkably, such changes mostly revert in cell line- and primary cell-derived in vivo xenograft models. Taken together, these results support the use of xenografts as the most representative models of in vivo epigenetic processes, suggesting caution when using cultured cells, in particular cell lines and long-term primary cultures, for epigenetic investigations.


Assuntos
Código das Histonas , Histonas/metabolismo , Neoplasias/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Epigênese Genética , Feminino , Perfilação da Expressão Gênica , Glioblastoma/genética , Glioblastoma/metabolismo , Xenoenxertos , Código das Histonas/genética , Histonas/genética , Humanos , Camundongos , Camundongos Nus , Modelos Biológicos , Neoplasias/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Processamento de Proteína Pós-Traducional , Proteômica , Células Tumorais Cultivadas
5.
Sci Rep ; 7(1): 6573, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28747664

RESUMO

Brain metastases (BMs) are the most common malignancy of the central nervous system. Recently it has been demonstrated that plasminogen activator inhibitor serpins promote brain metastatic colonization, suggesting that mutations in serpins or other members of the coagulation cascade can provide critical advantages during BM formation. We performed whole-exome sequencing on matched samples of breast cancer and BMs and found mutations in the coagulation pathway genes in 5 out of 10 BM samples. We then investigated the mutational status of 33 genes belonging to the coagulation cascade in a panel of 29 BMs and we identified 56 Single Nucleotide Variants (SNVs). The frequency of gene mutations of the pathway was significantly higher in BMs than in primary tumours, and SERPINI1 was the most frequently mutated gene in BMs. These findings provide direction in the development of new strategies for the treatment of BMs.


Assuntos
Fatores de Coagulação Sanguínea/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/secundário , Neoplasias da Mama/patologia , Mutação , Neoplasias da Mama/genética , Feminino , Humanos , Taxa de Mutação , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma
6.
Clin Epigenetics ; 9: 69, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28702092

RESUMO

BACKGROUND: Aberrations in histone post-translational modifications (hPTMs) have been linked with various pathologies, including cancer, and could not only represent useful biomarkers but also suggest possible targetable epigenetic mechanisms. We have recently developed an approach, termed pathology tissue analysis of histones by mass spectrometry (PAT-H-MS), that allows performing a comprehensive and quantitative analysis of histone PTMs from formalin-fixed paraffin-embedded pathology samples. Despite its great potential, the application of this technique is limited by tissue heterogeneity. METHODS: In this study, we further implemented the PAT-H-MS approach by coupling it with techniques aimed at reducing sample heterogeneity and selecting specific portions or cell populations within the samples, such as manual macrodissection and laser microdissection (LMD). RESULTS: When applied to the analysis of a small set of breast cancer samples, LMD-PAT-H-MS allowed detecting more marked changes between luminal A-like and triple negative patients as compared with the classical approach. These changes included not only the already known H3 K27me3 and K9me3 marks, but also H3 K36me1, which was found increased in triple negative samples and validated on a larger cohort of patients, and could represent a potential novel marker distinguishing breast cancer subtypes. CONCLUSIONS: These results show the feasibility of applying techniques to reduce sample heterogeneity, including laser microdissection, to the PAT-H-MS protocol, providing new tools in clinical epigenetics and opening new avenues for the comprehensive analysis of histone post-translational modifications in selected cell populations.


Assuntos
Histonas/metabolismo , Microdissecção e Captura a Laser/métodos , Espectrometria de Massas/métodos , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/patologia , Epigênese Genética , Estudos de Viabilidade , Feminino , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Leucemia/metabolismo , Leucemia/patologia , Camundongos , Processamento de Proteína Pós-Traducional , Proteômica/métodos , Fixação de Tecidos
7.
Oncotarget ; 7(44): 71491-71503, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27582543

RESUMO

Glioblastoma (GBM) is maintained by a small subpopulation of tumor-initiating cells (TICs). The arduous assessment of TIC frequencies challenges the prognostic role of TICs in predicting the clinical outcome in GBM patients. We estimated the TIC frequency in human GBM injecting intracerebrally in mice dissociated cells without any passage in culture.All GBMs contained rare TICsand were tumorigenic in vivo but only 54% of them grew in vitro as neurospheres. We demonstrated that neurosphere formation in vitro did not foretell tumorigenic ability in vivo and frequencies calculated in vitro overestimated the TIC content.Our findings assert the pathological significance of GBM TICs. TIC number correlated positively with tumor incidence and inversely with survival of tumor-bearing mice. Stratification of GBM patients according to TIC content revealed that patients with low TIC frequency experienced a trend towards a longer progression free survival. The expression of either putative stem-cell markers or markers associated with different GBM molecular subtypes did not associate with either TIC content or neurosphere formation underlying the limitations of TIC identification based on the expression of some putative stem cell-markers.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Células-Tronco Neoplásicas/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Neoplasias Encefálicas/mortalidade , Feminino , Glioblastoma/mortalidade , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade
8.
Oncotarget ; 6(31): 31413-27, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26429879

RESUMO

Little progresses have been made in the treatment of glioblastoma (GBM), the most aggressive and lethal among brain tumors. Recently we have demonstrated that Chloride Intracellular Channel-1 (CLIC1) is overexpressed in GBM compared to normal tissues, with highest expression in patients with poor prognosis. Moreover, CLIC1-silencing in cancer stem cells (CSCs) isolated from human GBM patients negatively influences proliferative capacity and self-renewal properties in vitro and impairs the in vivo tumorigenic potential. Here we show that CLIC1 exists also as a circulating protein, secreted via extracellular vesicles (EVs) released by either cell lines or GBM-derived CSCs. Extracellular vesicles (EVs), comprising exosomes and microvesicles based on their composition and biophysical properties, have been shown to sustain tumor growth in a variety of model systems, including GBM. Interestingly, treatment of GBM cells with CLIC1-containing EVs stimulates cell growth both in vitro and in vivo in a CLIC1-dose dependent manner. EVs derived from CLIC1-overexpressing GBM cells are strong inducers of proliferation in vitro and tumor engraftment in vivo. These stimulations are significantly attenuated by treatment of GBM cells with EVs derived from CLIC1-silenced cells. However, CLIC1 modulation appears to have no direct role in EV structure, biogenesis and secretion. These findings reveal that, apart from the function of CLIC1 cellular reservoir, CLIC1 contained in EVs is a novel regulator of GBM growth.


Assuntos
Neoplasias Encefálicas/patologia , Canais de Cloreto/metabolismo , Exossomos/patologia , Vesículas Extracelulares/patologia , Glioblastoma/patologia , Células-Tronco Neoplásicas/patologia , Animais , Apoptose , Western Blotting , Neoplasias Encefálicas/metabolismo , Proliferação de Células , Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , Glioblastoma/metabolismo , Humanos , Técnicas Imunoenzimáticas , Camundongos , Camundongos Nus , Nanopartículas/química , Células-Tronco Neoplásicas/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
9.
J Natl Cancer Inst ; 105(21): 1644-55, 2013 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-24115360

RESUMO

BACKGROUND: Chloride channels are physiologically involved in cell division and motility. Chloride intracellular channel 1 (CLIC1) is overexpressed in a variety of human solid tumors compared with normal tissues, suggesting a potential involvement of CLIC1 in the regulation of tumorigenesis. This led us to investigate the role of CLIC1 in gliomagenesis. METHODS: We used the neurosphere system to isolate stem/progenitor cells from human glioblastomas (GBMs). CLIC1 targeting in GBM neurospheres was achieved by both lentiviral-mediated short-hairpin RNA transduction and CLIC1 antibody treatment, and its effect on stem-like properties was analyzed in vitro by proliferation and clonogenic assays and in vivo by orthotopic injection in immunocompromised mice. Channel activity was studied by perforated patch clamp technique. Differences in expression were analyzed by analysis of variance with Tamhane's multiple comparison test. Kaplan-Meier analyses and log-rank test were used to assess survival. All statistical tests were two-sided. RESULTS: CLIC1 was statistically significantly overexpressed in GBMs compared with normal brain tissues (P < .001) with a better survival of patients with CLIC1 low-expressing tumors (CLIC1(low) vs CLIC1(high) survival: χ(2) = 74.35; degrees of freedom = 1; log-rank P < .001). CLIC1 was variably expressed in patient-derived GBM neurospheres and was found enriched in the stem/progenitor compartment. CLIC1 silencing reduced proliferative (P < .01), clonogenic (P < .01), and tumorigenic capacity (P < .05) of stem/progenitor cells. The reduction of CLIC1 chloride currents with a specific CLIC1 antibody mirrored the biological effects of CLIC1 silencing in GBM patient-derived neurospheres. CONCLUSIONS: Reduced gliomagenesis after CLIC1 targeting in tumoral stem/progenitor cells and the finding that CLIC1 expression is inversely associated with patient survival suggest CLIC1 as a potential target and prognostic biomarker.


Assuntos
Neoplasias Encefálicas/metabolismo , Carcinogênese/metabolismo , Canais de Cloreto/metabolismo , Glioblastoma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Análise de Variância , Animais , Western Blotting , Neoplasias Encefálicas/patologia , Imunofluorescência , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Camundongos , RNA Interferente Pequeno/farmacologia , Ensaio Tumoral de Célula-Tronco , Regulação para Cima
10.
Neoplasia ; 15(7): 840-7, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23814495

RESUMO

Glioblastoma (GBM) is a devastating brain tumor with a poor survival outcome. It is generated and propagated by a small subpopulation of rare and hierarchically organized cells that share stem-like features with normal stem cells but, however, appear dysregulated in terms of self-renewal and proliferation and aberrantly differentiate into cells forming the bulk of the disorganized cancer tissues. The complexity and heterogeneity of human GBMs underlie the lack of standardized and effective treatments. This study is based on the assumption that available markers defining cancer stem cells (CSCs) in all GBMs are not conclusive and further work is required to identify the CSC. We implemented a method to isolate CSCs independently from cell surface markers: four patient-derived GBM neurospheres containing stem, progenitors, and differentiated cells were labeled with PKH-26 fluorescent dye that reliably selects for cells that divide at low rate. Through in vitro and in vivo assays, we investigated the growth and self-renewal properties of the two different compartments of high- and slow-dividing cells. Our data demonstrate that only slow-dividing cells retain the ability of a long-lasting self-renewal capacity after serial in vitro passaging, while high-dividing cells eventually exhaust. Moreover, orthotopic transplantation assay revealed that the incidence of tumors generated by the slow-dividing compartment is significantly higher in the four patient-derived GBM neurospheres analyzed. Importantly, slow-dividing cells feature a population made up of homogeneous stem cells that sustain tumor growth and therefore represent a viable target for GBM therapy development.


Assuntos
Antígenos de Superfície/metabolismo , Neoplasias Encefálicas/metabolismo , Ciclo Celular , Glioblastoma/metabolismo , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo , Animais , Neoplasias Encefálicas/genética , Separação Celular/métodos , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Citometria de Fluxo , Glioblastoma/genética , Xenoenxertos , Humanos , Imunofenotipagem , Camundongos , Células-Tronco Neoplásicas/transplante , Compostos Orgânicos/metabolismo , Esferoides Celulares , Transcriptoma , Células Tumorais Cultivadas , Ensaio Tumoral de Célula-Tronco
11.
Nature ; 498(7455): 492-6, 2013 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-23748444

RESUMO

Cerebral cavernous malformation (CCM) is a vascular dysplasia, mainly localized within the brain and affecting up to 0.5% of the human population. CCM lesions are formed by enlarged and irregular blood vessels that often result in cerebral haemorrhages. CCM is caused by loss-of-function mutations in one of three genes, namely CCM1 (also known as KRIT1), CCM2 (OSM) and CCM3 (PDCD10), and occurs in both sporadic and familial forms. Recent studies have investigated the cause of vascular dysplasia and fragility in CCM, but the in vivo functions of this ternary complex remain unclear. Postnatal deletion of any of the three Ccm genes in mouse endothelium results in a severe phenotype, characterized by multiple brain vascular malformations that are markedly similar to human CCM lesions. Endothelial-to-mesenchymal transition (EndMT) has been described in different pathologies, and it is defined as the acquisition of mesenchymal- and stem-cell-like characteristics by the endothelium. Here we show that endothelial-specific disruption of the Ccm1 gene in mice induces EndMT, which contributes to the development of vascular malformations. EndMT in CCM1-ablated endothelial cells is mediated by the upregulation of endogenous BMP6 that, in turn, activates the transforming growth factor-ß (TGF-ß) and bone morphogenetic protein (BMP) signalling pathway. Inhibitors of the TGF-ß and BMP pathway prevent EndMT both in vitro and in vivo and reduce the number and size of vascular lesions in CCM1-deficient mice. Thus, increased TGF-ß and BMP signalling, and the consequent EndMT of CCM1-null endothelial cells, are crucial events in the onset and progression of CCM disease. These studies offer novel therapeutic opportunities for this severe, and so far incurable, pathology.


Assuntos
Progressão da Doença , Transição Epitelial-Mesenquimal , Hemangioma Cavernoso do Sistema Nervoso Central/patologia , Animais , Proteína Morfogenética Óssea 6/antagonistas & inibidores , Proteína Morfogenética Óssea 6/metabolismo , Proteína Morfogenética Óssea 6/farmacologia , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Humanos , Proteína KRIT1 , Camundongos , Proteínas Associadas aos Microtúbulos/deficiência , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fator de Crescimento Transformador beta/antagonistas & inibidores , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima
12.
J Oncol ; 2012: 376894, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22685459

RESUMO

Cancer stem cells (CSCs) were isolated in multiple tumor types, including human glioblastomas, and although the presence of surface markers selectively expressed on CSCs can be used to isolate them, no marker/pattern of markers are sufficiently robust to definitively identify stem cells in tumors. Several markers were evaluated for their prognostic value with promising early results, however none of them was proven to be clinically useful in large-scale studies, leading to outstanding efforts to identify new markers. Given the heterogeneity of human glioblastomas further investigations are necessary to identify both cancer stem cell-specific markers and the molecular mechanisms sustaining the tumorigenic potential of these cells to develop tailored treatments. Markers for glioblastoma stem cells such as CD133, CD15, integrin-α6, L1CAM might be informative to identify these cells but cannot be conclusively linked to a stem cell phenotype. Overlap of expression, functional state and morphology of different subpopulations lead to carefully consider the techniques employed so far to isolate these cells. Due to a dearth of methods and markers reliably identifying the candidate cancer stem cells, the isolation/enrichment of cancer stem cells to be therapeutically targeted remains a major challenge.

13.
Ann Neurol ; 70(3): 454-64, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21905079

RESUMO

OBJECTIVE: Enduring, abnormal expression and function of the ion channel hyperpolarization-activated cyclic adenosine monophosphate gated channel type 1 (HCN1) occurs in temporal lobe epilepsy (TLE). We examined the underlying mechanisms, and investigated whether interfering with these mechanisms could modify disease course. METHODS: Experimental TLE was provoked by kainic acid-induced status epilepticus (SE). HCN1 channel repression was examined at mRNA, protein, and functional levels. Chromatin immunoprecipitation was employed to identify the transcriptional mechanism of repressed HCN1 expression, and the basis for their endurance. Physical interaction of the repressor, NRSF, was abolished using decoy oligodeoxynucleotides (ODNs). Video/electroencephalographic recordings were performed to assess the onset and initial pattern of spontaneous seizures. RESULTS: Levels of NRSF and its physical binding to the Hcn1 gene were augmented after SE, resulting in repression of HCN1 expression and HCN1-mediated currents (I(h) ), and reduced I(h) -dependent resonance in hippocampal CA1 pyramidal cell dendrites. Chromatin changes typical of enduring, epigenetic gene repression were apparent at the Hcn1 gene within a week after SE. Administration of decoy ODNs comprising the NRSF DNA-binding sequence (neuron restrictive silencer element [NRSE]), in vitro and in vivo, reduced NRSF binding to Hcn1, prevented its repression, and restored I(h) function. In vivo, decoy NRSE ODN treatment restored theta rhythm and altered the initial pattern of spontaneous seizures. INTERPRETATION: Acquired HCN1 channelopathy derives from NRSF-mediated transcriptional repression that endures via chromatin modification and may provide insight into the mechanisms of a number of channelopathies that coexist with, and may contribute to, the conversion of a normal brain into an epileptic one.


Assuntos
Canalopatias/fisiopatologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/fisiologia , Epilepsia do Lobo Temporal/fisiopatologia , Nucleotídeos Cíclicos/metabolismo , Canais de Potássio/fisiologia , Proteínas Repressoras/fisiologia , Animais , Região CA1 Hipocampal/patologia , Canalopatias/genética , Canalopatias/metabolismo , Cromatina/patologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Dendritos/patologia , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/metabolismo , Agonistas de Aminoácidos Excitatórios , Expressão Gênica/genética , Expressão Gênica/fisiologia , Hipocampo/patologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Ativação do Canal Iônico/fisiologia , Ácido Caínico , Masculino , Canais de Potássio/genética , Ratos , Ratos Wistar , Proteínas Repressoras/antagonistas & inibidores , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/metabolismo , Estado Epiléptico/fisiopatologia
14.
Epilepsia ; 46 Suppl 5: 113-7, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15987264

RESUMO

PURPOSE: We investigated the activation of microglia and astrocytes, induction of cytokines, and hippocampal neuronal damage, 4 and 24 h after kainic acid-induced status epilepticus (SE) in postnatal day (PN) 9, 15, and 21 rats. METHODS: Limbic seizures were induced by systemic injection of kainic acid. Glia activation and neuronal cell loss were studied by using immunocytochemistry and Western blot. Cytokine expression was analyzed by reverse transcriptase-polymerase chain reaction (RT-PCR) followed by Southern blot quantification. RESULTS: After SE onset, hippocampal glia activation, cytokine expression, and neuronal damage are all age-dependent phenomena. In the hippocampus, neuronal injury occurs only when cytokines are induced in glia, and cytokine synthesis precedes the appearance of degenerating neurons. Neuronal injury is more pronounced when interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha) are produced in addition to IL-1beta. CONCLUSIONS: This study shows that cytokine induction in rat brain after sustained seizures is age dependent, and it is associated with the appearance of cell injury.


Assuntos
Hipocampo/crescimento & desenvolvimento , Hipocampo/imunologia , Inflamação/fisiopatologia , Neuroglia/imunologia , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/imunologia , Animais , Animais Recém-Nascidos , Astrócitos/imunologia , Astrócitos/fisiologia , Western Blotting , Citocinas/imunologia , Citocinas/fisiologia , Modelos Animais de Doenças , Gliose/imunologia , Gliose/fisiopatologia , Hipocampo/fisiopatologia , Imuno-Histoquímica , Inflamação/imunologia , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/fisiologia , Interleucina-6/imunologia , Ácido Caínico , Masculino , Degeneração Neural/imunologia , Degeneração Neural/fisiopatologia , Neuroglia/fisiologia , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estado Epiléptico/fisiopatologia , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/fisiologia
15.
J Neurosci ; 24(12): 3051-9, 2004 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-15044544

RESUMO

Neuropeptide Y (NPY) inhibits seizures in experimental models and reduces excitability in human epileptic tissue. We studied the effect of long-lasting NPY overexpression in the rat hippocampus with local application of recombinant adeno-associated viral (AAV) vectors on acute kainate seizures and kindling epileptogenesis. Transgene expression was significantly increased by 7 d, reached maximal expression by 2 weeks, and persisted for at least 3 months. Serotype 2 AAV vector increased NPY expression in hilar interneurons, whereas the chimeric serotype 1/2 vector caused far more widespread expression, also including mossy fibers, pyramidal cells, and the subiculum. EEG seizures induced by intrahippocampal kainate were reduced by 50-75%, depending on the vector serotype, and seizure onset was markedly delayed. In rats injected with the chimeric serotype 1/2 vector, status epilepticus was abolished, and kindling acquisition was significantly delayed. Thus, targeted NPY gene transfer provides a potential therapeutic principle for the treatment of drug-resistant partial epilepsies.


Assuntos
Epilepsia/terapia , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Hipocampo/fisiopatologia , Neuropeptídeo Y/biossíntese , Animais , Dependovirus/genética , Modelos Animais de Doenças , Eletroencefalografia/efeitos dos fármacos , Epilepsia/fisiopatologia , Epilepsia/prevenção & controle , Expressão Gênica , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Injeções Intraventriculares , Ácido Caínico , Excitação Neurológica , Masculino , Neuropeptídeo Y/genética , Neuropeptídeo Y/uso terapêutico , Ratos , Ratos Sprague-Dawley , Convulsões/induzido quimicamente , Convulsões/fisiopatologia , Convulsões/prevenção & controle , Resultado do Tratamento
16.
Neurobiol Dis ; 14(3): 494-503, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14678765

RESUMO

In adult rats, status epilepticus (SE) induces cytokine production by glia especially when seizures are associated with neuronal injury. This suggests that cytokines may play a role in seizure-induced neuronal damage. As SE-induced injury is age-specific, we used rats of different ages (with distinct susceptibilities to seizure-induced neuronal injury) to elucidate the role of cytokines in this process. Thus, we investigated the activation of microglia and astrocytes, induction of cytokines, and hippocampal neuronal injury 4 and 24 h following kainic acid-induced SE in postnatal day (PN) 9, 15, and 21 rats. At PN9, there was little activation of microglia and astrocytes at any time point studied. Interleukin-1beta (IL), tumor necrosis factor-alpha (TNF), and IL-6 or the naturally occurring IL-1 receptor antagonist (Ra) mRNA expression did not increase. No evidence of cell injury has been detected. At PN15, immunostaining of microglia and astrocytes was enhanced, but only IL-1beta mRNA expression was increased. These changes were observed 4 h after SE. Scattered injured neurons in CA3 and subiculum, but not in any other region, were present 24 h following SE. At PN21, immunostaining of microglia and astrocytes and the mRNA expression of all cytokines studied was significantly increased already 4 h after SE. At 24 h, many injured neurons were present in CA1 and CA3 regions and in 40% of rats in other forebrain areas. These data show that (i) the pattern of glia activation and cytokine gene transcription induced by SE is age-dependent and (ii) neuronal injury in the hippocampus occurs only when cytokines are induced and their synthesis precedes the appearance of neuronal damage. Thus, cytokine expression in immature brain is associated specifically with cell injury rather than with seizures per se, suggesting that proinflammatory cytokines may contribute to the occurence of SE-induced hippocampal damage.


Assuntos
Envelhecimento/metabolismo , Citocinas/metabolismo , Gliose/fisiopatologia , Hipocampo/fisiopatologia , Degeneração Neural/fisiopatologia , Estado Epiléptico/metabolismo , Animais , Animais Recém-Nascidos , Citocinas/genética , Modelos Animais de Doenças , Suscetibilidade a Doenças/imunologia , Suscetibilidade a Doenças/metabolismo , Suscetibilidade a Doenças/fisiopatologia , Epilepsia/imunologia , Epilepsia/metabolismo , Epilepsia/fisiopatologia , Feminino , Gliose/imunologia , Gliose/metabolismo , Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , Mediadores da Inflamação/metabolismo , Proteína Antagonista do Receptor de Interleucina 1 , Ácido Caínico , Masculino , Degeneração Neural/imunologia , Degeneração Neural/metabolismo , Neuroglia/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Sialoglicoproteínas/metabolismo , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/imunologia , Regulação para Cima/fisiologia
17.
Eur J Neurosci ; 18(7): 2087-92, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14622242

RESUMO

Galanin, a 29- or 30-amino acid neuropeptide, has been implicated in the modulation of seizures. In this study, we constructed a recombinant adeno-associated viral (AAV) vector to constitutively over-express galanin (AAV-GAL). The vector mediated efficient transduction of HEK 293 cells in vitro and robust galanin expression in vivo when injected into the rat dorsal hippocampus. Rats were administered kainic acid intrahippocampally 2.5 months following AAV-GAL or empty vector (AAV-Empty) injection to study the effect of vector-mediated galanin over-expression on seizures. AAV-GAL-injected rats showed a decreased number of seizure episodes and total time spent in seizures compared to AAV-Empty rats, despite similar latencies to development of the first EEG seizure and similar levels of neuronal damage in the CA3 region for both groups. These data show that recombinant AAV mediates strong and stable over-expression of galanin when injected into the rat hippocampus resulting in a significant anticonvulsive effect. The seizure suppression effect of galanin expression in the hippocampus by viral vectors may lead to novel therapeutic strategies for the treatment and management of intractable seizures with focal onset such as temporal lobe epilepsy.


Assuntos
Galanina/metabolismo , Hipocampo/metabolismo , Convulsões/metabolismo , Animais , Linhagem Celular , Dependovirus/genética , Eletroencefalografia/métodos , Agonistas de Aminoácidos Excitatórios/toxicidade , Fluoresceínas , Corantes Fluorescentes/metabolismo , Lateralidade Funcional , Galanina/genética , Terapia Genética , Vetores Genéticos/genética , Hipocampo/patologia , Hipocampo/virologia , Humanos , Imuno-Histoquímica/métodos , Ácido Caínico/toxicidade , Rim , Masculino , Compostos Orgânicos , Ratos , Convulsões/induzido quimicamente , Convulsões/terapia , Convulsões/virologia , Fatores de Tempo , Transfecção/métodos
18.
Epilepsia ; 43 Suppl 5: 30-5, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12121291

RESUMO

PURPOSE: We investigated the changes in the expression of proinflammatory cytokines and related molecules in the rodent hippocampus after the induction of limbic seizures. We then studied the effects of pharmacologic intervention on the interleukin (IL)-1 system on limbic seizures and the susceptibility to seizures of transgenic mice overexpressing the naturally occurring antagonist of IL-1 (IL-1Ra) in astrocytes. METHODS: Limbic seizures were induced in rodents by intrahippocampal injection of kainic acid or bicuculline methiodide or by electrical stimulation of the hippocampus causing status epilepticus (SE). Seizure activity was recorded by EEG analysis and behavioral observation according to Racine's scale. Cytokine expression in the hippocampus was studied by reverse transcriptase-polymerase chain reaction (RT-PCR) followed by Southern blot quantification of the various messenger RNAs (mRNAs) and by immunocytochemistry. RESULTS: We found that limbic seizures rapidly and transiently enhanced IL-1beta, IL-6, and tumor necrosis factor (TNF)-alpha mRNA in the hippocampus with a peak effect at 6 h after SE. Immunoreactivity of the various cytokines was increased in glia. The increase of IL-1Ra was delayed because the peak effect was observed at 24 h after SE. Moreover, IL-1Ra was not produced in large excess, as during peripheral inflammation but in a molar ratio to IL-1beta of 1:1. Intrahippocampal injection of IL-1beta worsened seizure activity, whereas IL-1Ra was a powerful anticonvulsant in various models of limbic seizures. Transgenic mice overexpressing IL-1Ra in astrocytes were less sensitive to bicuculline-induced seizures. CONCLUSIONS: This study shows that limbic seizures in rodents rapidly and reversibly induce proinflammatory cytokines in glia and suggests that changes in the IL-1Ra/IL-1beta ratio in brain may represent an effective physiopathologic mechanism to control seizures.


Assuntos
Citocinas/metabolismo , Epilepsia/etiologia , Epilepsia/fisiopatologia , Mediadores da Inflamação/metabolismo , Convulsões/fisiopatologia , Animais , Proteína Antagonista do Receptor de Interleucina 1 , Interleucina-1/metabolismo , Sistema Límbico/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos , Camundongos Transgênicos , Ratos , Ratos Sprague-Dawley , Sialoglicoproteínas/farmacologia
19.
J Neurosci ; 22(14): 5833-9, 2002 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-12122045

RESUMO

The causes and mechanisms underlying multidrug resistance (MDR) in epilepsy are still elusive and may depend on inadequate drug concentration in crucial brain areas. We studied whether limbic seizures or anticonvulsant drug treatments in rodents enhance the brain expression of the MDR gene (mdr) encoding a permeability glycoprotein (P-gp) involved in MDR to various cancer chemotherapeutic agents. We also investigated whether changes in P-gp levels affect anticonvulsant drug concentrations in the brain. Mdr mRNA measured by RT-PCR increased by 85% on average in the mouse hippocampus 3-24 hr after kainic acid-induced limbic seizures, returning to control levels by 72 hr. Treatment with therapeutic doses of phenytoin or carbamazepine for 7 d did not change mdr mRNA expression in the mouse hippocampus 1-72 hr after the last drug administration. Six hours after seizures, the brain/plasma ratio of phenytoin was reduced by 30% and its extracellular concentration estimated by microdialysis was increased by twofold compared with control mice. Knock-out mice (mdr1a/b -/-) lacking P-gp protein showed a 46% increase in phenytoin concentrations in the hippocampus 1 and 4 hr after injection compared with wild-type mice. A significant 23% increase was found in the cerebellum at 1 hr and in the cortex at 4 hr. Carbamazepine concentrations were measurable in the hippocampus at 3 hr in mdr1a/b -/- mice, whereas they were undetectable at the same time interval in wild-type mice. In rats having spontaneous seizures 3 months after electrically induced status epilepticus, mdr1 mRNA levels were enhanced by 1.8-fold and fivefold on average in the hippocampus and entorhinal cortex, respectively. Thus, changes in P-gp mRNA levels occur in limbic areas after both acute and chronic epileptic activity. P-gp alterations significantly affect antiepileptic drugs concentrations in the brain, suggesting that seizure-induced mdr mRNA expression contributes to MDR in epilepsy.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Encéfalo/fisiopatologia , Resistência a Medicamentos , Convulsões/fisiopatologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Animais , Anticonvulsivantes/farmacocinética , Anticonvulsivantes/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Modelos Animais de Doenças , Resistência a Medicamentos/fisiologia , Estimulação Elétrica , Eletroencefalografia , Córtex Entorrinal/efeitos dos fármacos , Córtex Entorrinal/metabolismo , Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Homozigoto , Sistema Límbico/efeitos dos fármacos , Sistema Límbico/metabolismo , Sistema Límbico/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA