Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Mol Gastroenterol Hepatol ; 9(3): 507-526, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31778828

RESUMO

BACKGROUND & AIMS: The mucus layer in the human colon protects against commensal bacteria and pathogens, and defects in its unique bilayered structure contribute to intestinal disorders, such as ulcerative colitis. However, our understanding of colon physiology is limited by the lack of in vitro models that replicate human colonic mucus layer structure and function. Here, we investigated if combining organ-on-a-chip and organoid technologies can be leveraged to develop a human-relevant in vitro model of colon mucus physiology. METHODS: A human colon-on-a-chip (Colon Chip) microfluidic device lined by primary patient-derived colonic epithelial cells was used to recapitulate mucus bilayer formation, and to visualize mucus accumulation in living cultures noninvasively. RESULTS: The Colon Chip supports spontaneous goblet cell differentiation and accumulation of a mucus bilayer with impenetrable and penetrable layers, and a thickness similar to that observed in the human colon, while maintaining a subpopulation of proliferative epithelial cells. Live imaging of the mucus layer formation on-chip showed that stimulation of the colonic epithelium with prostaglandin E2, which is increased during inflammation, causes rapid mucus volume expansion via an Na-K-Cl cotransporter 1 ion channel-dependent increase in its hydration state, but no increase in de novo mucus secretion. CONCLUSIONS: This study shows the production of colonic mucus with a physiologically relevant bilayer structure in vitro, which can be analyzed in real time noninvasively. The Colon Chip may offer a new preclinical tool to analyze the role of mucus in human intestinal homeostasis as well as diseases, such as ulcerative colitis and cancer.


Assuntos
Colo/metabolismo , Mucosa Intestinal/metabolismo , Dispositivos Lab-On-A-Chip , Muco/metabolismo , Células Cultivadas , Dinoprostona/metabolismo , Células Caliciformes/fisiologia , Humanos , Organoides , Cultura Primária de Células/métodos , Membro 1 da Família 12 de Carreador de Soluto/metabolismo
2.
Am J Hum Genet ; 103(1): 131-137, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29909964

RESUMO

Homozygous nonsense mutations in WNT2B were identified in three individuals from two unrelated families with severe, neonatal-onset osmotic diarrhea after whole-exome sequencing was performed on trios from the two families. Intestinal biopsy samples from affected individuals were used for histology and immunofluorescence and to generate enteroids ex vivo. Histopathologic evaluation demonstrated chronic inflammatory changes in the stomach, duodenum, and colon. Immunofluorescence demonstrated diminished staining for OLFM4, a marker for intestinal stem cells (ISCs). The enteroids generated from WNT2B-deficient intestinal epithelium could not be expanded and did not survive passage. Addition of CHIR-99021 (a GSK3A and GSK3B inhibitor and activator of canonical WNT/ß-CATENIN signaling) could not rescue WNT2B-deficient enteroids. Addition of supplemental recombinant murine WNT2B was able to perpetuate small enteroids for multiple passages but failed to expand their number. Enteroids showed a 10-fold increase in the expression of LEF1 mRNA and a 100-fold reduction in TLR4 expression, compared with controls by quantitative RT-PCR, indicating alterations in canonical WNT and microbial pattern-recognition signaling. In summary, individuals with homozygous nonsense mutations in WNT2B demonstrate severe intestinal dysregulation associated with decreased ISC number and function, likely explaining their diarrheal phenotype. WNT2B deficiency should be considered for individuals with neonatal-onset diarrhea.


Assuntos
Códon sem Sentido/genética , Diarreia/genética , Glicoproteínas/genética , Proteínas Wnt/genética , Criança , Pré-Escolar , Feminino , Homozigoto , Humanos , Lactente , Intestinos/patologia , Masculino , RNA Mensageiro/genética , Transdução de Sinais/genética , Células-Tronco/patologia
3.
Sci Rep ; 8(1): 2871, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29440725

RESUMO

Here we describe a method for fabricating a primary human Small Intestine-on-a-Chip (Intestine Chip) containing epithelial cells isolated from healthy regions of intestinal biopsies. The primary epithelial cells are expanded as 3D organoids, dissociated, and cultured on a porous membrane within a microfluidic device with human intestinal microvascular endothelium cultured in a parallel microchannel under flow and cyclic deformation. In the Intestine Chip, the epithelium forms villi-like projections lined by polarized epithelial cells that undergo multi-lineage differentiation similar to that of intestinal organoids, however, these cells expose their apical surfaces to an open lumen and interface with endothelium. Transcriptomic analysis also indicates that the Intestine Chip more closely mimics whole human duodenum in vivo when compared to the duodenal organoids used to create the chips. Because fluids flowing through the lumen of the Intestine Chip can be collected continuously, sequential analysis of fluid samples can be used to quantify nutrient digestion, mucus secretion and establishment of intestinal barrier function over a period of multiple days in vitro. The Intestine Chip therefore may be useful as a research tool for applications where normal intestinal function is crucial, including studies of metabolism, nutrition, infection, and drug pharmacokinetics, as well as personalized medicine.


Assuntos
Intestino Delgado/citologia , Dispositivos Lab-On-A-Chip , Organoides/citologia , Biópsia , Proliferação de Células , Células Epiteliais/citologia , Humanos
4.
Stem Cell Reports ; 10(1): 17-26, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29276155

RESUMO

The intestinal epithelium serves as an essential barrier to the outside world and is maintained by functionally distinct populations of rapidly cycling intestinal stem cells (CBC ISCs) and slowly cycling, reserve ISCs (r-ISCs). Because disruptions in the epithelial barrier can result from pathological activation of the immune system, we sought to investigate the impact of inflammation on ISC behavior during the regenerative response. In a murine model of αCD3 antibody-induced small-intestinal inflammation, r-ISCs proved highly resistant to injury, while CBC ISCs underwent apoptosis. Moreover, r-ISCs were induced to proliferate and functionally contribute to intestinal regeneration. Further analysis revealed that the inflammatory cytokines interferon gamma and tumor necrosis factor alpha led to r-ISC activation in enteroid culture, which could be blocked by the JAK/STAT inhibitor, tofacitinib. These results highlight an important role for r-ISCs in response to acute intestinal inflammation and show that JAK/STAT-1 signaling is required for the r-ISC regenerative response.


Assuntos
Enterite/metabolismo , Mucosa Intestinal/fisiologia , Intestino Delgado/metabolismo , Janus Quinases/metabolismo , Regeneração , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo , Doença Aguda , Animais , Apoptose/efeitos dos fármacos , Citocinas/metabolismo , Enterite/induzido quimicamente , Enterite/patologia , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Mucosa Intestinal/patologia , Intestino Delgado/patologia , Janus Quinases/antagonistas & inibidores , Camundongos , Camundongos Transgênicos , Piperidinas/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia , Fator de Transcrição STAT1/antagonistas & inibidores , Células-Tronco/patologia
5.
J Physiol ; 594(17): 4805-13, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-26670741

RESUMO

Long-lived and self-renewing adult stem cells (SCs) are essential for homeostasis in a wide range of tissues and can include both rapidly cycling and quiescent (q)SC populations. Rapidly cycling SCs function principally during normal tissue maintenance and are highly sensitive to stress, whereas qSCs exit from their quiescent state in response to homeostatic imbalance and regenerative pressure. The regulatory mechanisms underlying the quiescent state include factors essential for cell cycle control, stress response and survival pathways, developmental signalling pathways, and post-transcriptional modulation. Here, we review these regulatory mechanisms citing observations from the intestine and other self-renewing tissues.


Assuntos
Células-Tronco Adultas/fisiologia , Intestinos/citologia , Animais , Autofagia , Proteínas Inibidoras de Quinase Dependente de Ciclina/fisiologia , Proteínas de Ligação a DNA/fisiologia , PTEN Fosfo-Hidrolase/fisiologia , Proteínas Quinases/fisiologia
6.
Cell Rep ; 13(11): 2403-2411, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26686631

RESUMO

The cellular and molecular mechanisms underlying adaptive changes to physiological stress within the intestinal epithelium remain poorly understood. Here, we show that PTEN, a negative regulator of the PI3K→AKT→mTORC1-signaling pathway, is an important regulator of dormant intestinal stem cells (d-ISCs). Acute nutrient deprivation leads to transient PTEN phosphorylation within d-ISCs and a corresponding increase in their number. This release of PTEN inhibition renders d-ISCs functionally poised to contribute to the regenerative response during re-feeding via cell-autonomous activation of the PI3K→AKT→mTORC1 pathway. Consistent with its role in mediating cell survival, PTEN is required for d-ISC maintenance at baseline, and intestines lacking PTEN have diminished regenerative capacity after irradiation. Our results highlight a PTEN-dependent mechanism for d-ISC maintenance and further demonstrate the role of d-ISCs in the intestinal response to stress.


Assuntos
Intestinos/citologia , Estado Nutricional , PTEN Fosfo-Hidrolase/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Proliferação de Células , Feminino , Genes Reporter , Intestinos/patologia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Complexos Multiproteicos/metabolismo , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Telomerase/genética , Telomerase/metabolismo
7.
Prog Mol Biol Transl Sci ; 96: 207-29, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21075346

RESUMO

Regulation of gene expression within the intestinal epithelium is complex and controlled by various signaling pathways that regulate the balance between proliferation and differentiation. Proliferation is required both to grow and to replace cells lost through apoptosis and attrition, yet in all but a few cells, differentiation must take place to prevent uncontrolled growth (cancer) and to provide essential functions. In this chapter, we review the major signaling pathways underlying regulation of gene expression within the intestinal epithelium, based primarily on data from mouse models, as well as specific morphogens and transcription factor families that have a major role in regulating intestinal gene expression, including the Hedgehog family, Forkhead Box (FOX) factors, Homeobox (HOX) genes, ParaHox genes, GATA transcription factors, canonical Wnt/ß-catenin signaling, EPH/Ephrins, Sox9, BMP signaling, PTEN/PI3K, LKB1, K-RAS, Notch pathway, HNF, and MATH1. We also briefly highlight important emerging areas of gene regulation, including microRNA (miRNA) and epigenetic regulation.


Assuntos
Regulação da Expressão Gênica , Mucosa Intestinal/metabolismo , Animais , Humanos , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA