Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38948715

RESUMO

The distal bronchioles in Idiopathic Pulmonary Fibrosis (IPF) exhibit histopathological abnormalities such as bronchiolization, peribronchiolar fibrosis and honeycomb cysts that contribute to the overall architectural remodeling of lung tissue seen in the disease. Here we describe an additional histopathologic finding of epithelial desquamation in patients with IPF, wherein epithelial cells detach from the basement membrane of the distal bronchioles. To understand the mechanism driving this pathology, we performed spatial transcriptomics of the epithelial cells and spatial proteomics of the basement membrane of the distal bronchioles from IPF patients and patients with no prior history of lung disease. Our findings reveal a downregulation of cell junctional components, upregulation of epithelial-mesenchymal transition signatures and dysregulated basement membrane matrix in IPF distal bronchioles, facilitating epithelial desquamation. Further, functional assays identified regulation between Collagen IV in the matrix, and the junctional genes JUP and PLEC , that is crucial for maintaining distal bronchiolar homeostasis. In IPF, this balanced regulation between matrix and cell-junctions is disrupted, leading to loss of epithelial adhesion, peribronchiolar fibrosis and epithelial desquamation. Overall, our study suggests that in IPF the interplay between the loss of cell junctions and a dysregulated matrix results in desquamation of distal bronchiolar epithelium and lung remodeling, exacerbating the disease. One Sentence Summary: Two-way regulation of cell junctional proteins and matrix proteins drives cellular desquamation and fibrosis in the distal bronchioles of patients with Idiopathic Pulmonary Fibrosis.

2.
Front Pharmacol ; 14: 1211026, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37608896

RESUMO

Introduction: Small-cell-lung-cancer (SCLC) has the worst prognosis of all lung cancers because of a high incidence of relapse after therapy. While lung cancer is the second most common malignancy in the US, only about 10% of cases of lung cancer are SCLC, therefore, it is categorized as a rare and recalcitrant disease. Therapeutic discovery for SCLC has been challenging and the existing pre-clinical models often fail to recapitulate actual tumor pathophysiology. To address this, we developed a bioengineered 3-dimensional (3D) SCLC co-culture organoid model as a phenotypic tool to study SCLC tumor kinetics and SCLC-fibroblast interactions after chemotherapy. Method: We used functionalized alginate microbeads as a scaffold to mimic lung alveolar architecture and co-cultured SCLC cell lines with primary adult lung fibroblasts (ALF). We found that SCLCs in the model proliferated extensively, invaded the microbead scaffold and formed tumors within just 7 days. We compared the bioengineered tumors with patient tumors and found them to recapitulate the pathology and immunophenotyping of the patient tumors. When treated with standard chemotherapy drugs, etoposide and cisplatin, we observed that some of the cells survived the chemotherapy and reformed the tumor in the organoid model. Result and Discussion: Co-culture of the SCLC cells with ALFs revealed that the fibroblasts play a key role in inducing faster and more robust SCLC cell regrowth in the model. This is likely due to a paracrine effect, as conditioned media from the same fibroblasts could also support this accelerated regrowth. This model can be used to study cell-cell interactions and the response to chemotherapy in SCLC and is also scalable and amenable to high throughput phenotypic or targeted drug screening to find new therapeutics for SCLC.

3.
bioRxiv ; 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36711908

RESUMO

Small-cell-lung-cancer (SCLC) has the worst prognosis of all lung cancers because of a high incidence of relapse after therapy. We developed a bioengineered 3-dimensional (3D) SCLC co-culture organoid as a phenotypic tool to study SCLC tumor kinetics and SCLC-fibroblast interactions during relapse. We used functionalized alginate microbeads as a scaffold to mimic lung alveolar architecture and co-cultured SCLC cell lines with primary adult lung fibroblasts (ALF). We found that SCLCs in the model proliferated extensively, invaded the microbead scaffold and formed tumors within just 7 days. We compared the bioengineered tumors with patient tumors and found them to recapitulate the pathology and immunophenotyping of the patient tumors better than the PDX model developed from the same SCLC cell line. When treated with standard chemotherapy drugs, etoposide and cisplatin, the organoid recapitulated relapse after chemotherapy. Co-culture of the SCLC cells with ALFs revealed that the fibroblasts play a key role in inducing faster and more robust SCLC cell regrowth in the model. This was a paracrine effect as conditioned medium from the same fibroblasts was responsible for this accelerated cell regrowth. This model is also amenable to high throughput phenotypic or targeted drug screening to find new therapeutics for SCLC.

4.
Oncogene ; 42(6): 434-448, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36509998

RESUMO

Small cell lung cancer (SCLC) remains a lethal disease with a dismal overall survival rate of 6% despite promising responses to upfront combination chemotherapy. The key drivers of such rapid mortality include early metastatic dissemination in the natural course of the disease and the near guaranteed emergence of chemoresistant disease. Here, we found that we could model the regression and relapse seen in clinical SCLC in vitro. We utilized time-course resolved RNA-sequencing to globally profile transcriptome changes as SCLC cells responded to a combination of cisplatin and etoposide-the standard-of-care in SCLC. Comparisons across time points demonstrated a distinct transient transcriptional state resembling embryonic diapause. Differential gene expression analysis revealed that expression of the PEA3 transcription factors ETV4 and ETV5 were transiently upregulated in the surviving fraction of cells which we determined to be necessary for efficient clonogenic expansion following chemotherapy. The FGFR-PEA3 signaling axis guided the identification of a pan-FGFR inhibitor demonstrating in vitro and in vivo efficacy in delaying progression following combination chemotherapy, observed inhibition of phosphorylation of the FGFR adaptor FRS2 and corresponding downstream MAPK and PI3K-Akt signaling pathways. Taken together, these data nominate PEA3 transcription factors as key mediators of relapse progression in SCLC and identify a clinically actionable small molecule candidate for delaying relapse of SCLC.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/patologia , Fosfatidilinositol 3-Quinases/genética , Recidiva Local de Neoplasia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Linhagem Celular Tumoral
5.
Nat Med ; 27(5): 806-814, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33958799

RESUMO

Cystic fibrosis (CF) is a lethal autosomal recessive disorder that afflicts more than 70,000 people. People with CF experience multi-organ dysfunction resulting from aberrant electrolyte transport across polarized epithelia due to mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CF-related lung disease is by far the most important determinant of morbidity and mortality. Here we report results from a multi-institute consortium in which single-cell transcriptomics were applied to define disease-related changes by comparing the proximal airway of CF donors (n = 19) undergoing transplantation for end-stage lung disease with that of previously healthy lung donors (n = 19). Disease-dependent differences observed include an overabundance of epithelial cells transitioning to specialized ciliated and secretory cell subsets coupled with an unexpected decrease in cycling basal cells. Our study yields a molecular atlas of the proximal airway epithelium that will provide insights for the development of new targeted therapies for CF airway disease.


Assuntos
Fibrose Cística/genética , Fibrose Cística/patologia , Células Epiteliais/citologia , Pulmão/patologia , Mucosa Respiratória/patologia , Diferenciação Celular/genética , Cílios/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/biossíntese , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Epiteliais/patologia , Perfilação da Expressão Gênica , Humanos , Análise de Célula Única/métodos , Transcriptoma/genética
6.
Cell Stem Cell ; 27(6): 869-875.e4, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33259798

RESUMO

Current smoking is associated with increased risk of severe COVID-19, but it is not clear how cigarette smoke (CS) exposure affects SARS-CoV-2 airway cell infection. We directly exposed air-liquid interface (ALI) cultures derived from primary human nonsmoker airway basal stem cells (ABSCs) to short term CS and then infected them with SARS-CoV-2. We found an increase in the number of infected airway cells after CS exposure with a lack of ABSC proliferation. Single-cell profiling of the cultures showed that the normal interferon response was reduced after CS exposure with infection. Treatment of CS-exposed ALI cultures with interferon ß-1 abrogated the viral infection, suggesting one potential mechanism for more severe viral infection. Our data show that acute CS exposure allows for more severe airway epithelial disease from SARS-CoV-2 by reducing the innate immune response and ABSC proliferation and has implications for disease spread and severity in people exposed to CS.


Assuntos
COVID-19/fisiopatologia , Mucosa Respiratória/fisiopatologia , Fumar/efeitos adversos , Células-Tronco/virologia , COVID-19/genética , COVID-19/imunologia , COVID-19/terapia , Células Cultivadas , Regulação para Baixo , Humanos , Imunidade Inata , Interferon beta/uso terapêutico , Gravidade do Paciente , Mucosa Respiratória/virologia
7.
bioRxiv ; 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32766588

RESUMO

Most demographic studies are now associating current smoking status with increased risk of severe COVID-19 and mortality from the disease but there remain many questions about how direct cigarette smoke exposure affects SARS-CoV-2 airway cell infection. We directly exposed mucociliary air-liquid interface (ALI) cultures derived from primary human nonsmoker airway basal stem cells (ABSCs) to short term cigarette smoke and infected them with live SARS-CoV-2. We found an increase in the number of infected airway cells after cigarette smoke exposure as well as an increased number of apoptotic cells. Cigarette smoke exposure alone caused airway injury that resulted in an increased number of ABSCs, which proliferate to repair the airway. But we found that acute SARS-CoV-2 infection or the combination of exposure to cigarette smoke and SARS-CoV-2 did not induce ABSC proliferation. We set out to examine the underlying mechanism governing the increased susceptibility of cigarette smoke exposed ALI to SARS-CoV-2 infection. Single cell profiling of the cultures showed that infected airway cells displayed a global reduction in gene expression across all airway cell types. Interestingly, interferon response genes were induced in SARS-CoV-2 infected airway epithelial cells in the ALI cultures but smoking exposure together with SARS-CoV-2 infection reduced the interferon response. Treatment of cigarette smoke-exposed ALI cultures with Interferon ß-1 abrogated the viral infection, suggesting that the lack of interferon response in the cigarette smoke-exposed ALI cultures allows for more severe viral infection and cell death. In summary, our data show that acute smoke exposure allows for more severe proximal airway epithelial disease from SARS-CoV-2 by reducing the mucosal innate immune response and ABSC proliferation and has implications for disease spread and severity in people exposed to cigarette smoke.

8.
Cell Rep ; 30(7): 2055-2064.e5, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32075752

RESUMO

Mechanisms underpinning airway epithelial homeostatic maintenance and ways to prevent its dysregulation remain elusive. Herein, we identify that ß-catenin phosphorylated at Y489 (p-ß-cateninY489) emerges during human squamous lung cancer progression. This led us to develop a model of airway basal stem cell (ABSC) hyperproliferation by driving Wnt/ß-catenin signaling, resulting in a morphology that resembles premalignant lesions and loss of ciliated cell differentiation. To identify small molecules that could reverse this process, we performed a high-throughput drug screen for inhibitors of Wnt/ß-catenin signaling. Our studies unveil Wnt inhibitor compound 1 (WIC1), which suppresses T-cell factor/lymphoid enhancer-binding factor (TCF/LEF) activity, reduces ABSC proliferation, induces ciliated cell differentiation, and decreases nuclear p-ß-cateninY489. Collectively, our work elucidates a dysregulated Wnt/p-ß-cateninY489 axis in lung premalignancy that can be modeled in vitro and identifies a Wnt/ß-catenin inhibitor that promotes airway homeostasis. WIC1 may therefore serve as a tool compound in regenerative medicine studies with implications for restoring normal airway homeostasis after injury.


Assuntos
Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Proteínas Wnt/antagonistas & inibidores , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Brônquios/citologia , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Brônquios/patologia , Diferenciação Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Ensaios de Triagem em Larga Escala/métodos , Homeostase/efeitos dos fármacos , Humanos , Pulmão/citologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/patologia , Bibliotecas de Moléculas Pequenas/farmacologia , Células-Tronco/citologia , Células-Tronco/patologia , Transfecção , Proteínas Wnt/metabolismo , beta Catenina/antagonistas & inibidores , beta Catenina/metabolismo
9.
PLoS One ; 6(1): e16459, 2011 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-21298072

RESUMO

HIV-1-infected adults over the age of 50 years progress to AIDS more rapidly than adults in their twenties or thirties. In addition, HIV-1-infected individuals receiving antiretroviral therapy (ART) present with clinical diseases, such as various cancers and liver disease, more commonly seen in older uninfected adults. These observations suggest that HIV-1 infection in older persons can have detrimental immunological effects that are not completely reversed by ART. As naïve T-cells are critically important in responses to neoantigens, we first analyzed two subsets (CD45RA(+)CD31(+) and CD45RA(+)CD31(-)) within the naïve CD4(+) T-cell compartment in young (20-32 years old) and older (39-58 years old), ART-naïve, HIV-1 seropositive individuals within 1-3 years of infection and in age-matched seronegative controls. HIV-1 infection in the young cohort was associated with lower absolute numbers of, and shorter telomere lengths within, both CD45RA(+)CD31(+)CD4(+) and CD45RA(+)CD31(-)CD4(+) T-cell subsets in comparison to age-matched seronegative controls, changes that resembled seronegative individuals who were decades older. Longitudinal analysis provided evidence of thymic emigration and reconstitution of CD45RA(+)CD31(+)CD4(+) T-cells two years post-ART, but minimal reconstitution of the CD45RA(+)CD31(-)CD4(+) subset, which could impair de novo immune responses. For both ART-naïve and ART-treated HIV-1-infected adults, a renewable pool of thymic emigrants is necessary to maintain CD4(+) T-cell homeostasis. Overall, these results offer a partial explanation both for the faster disease progression of older adults and the observation that viral responders to ART present with clinical diseases associated with older adults.


Assuntos
Envelhecimento/imunologia , Linfócitos T CD4-Positivos/citologia , Infecções por HIV/imunologia , Adulto , Fatores Etários , Antirretrovirais , Contagem de Linfócito CD4 , Estudos de Casos e Controles , Infecções por HIV/tratamento farmacológico , Homeostase , Humanos , Estudos Longitudinais , Pessoa de Meia-Idade , Subpopulações de Linfócitos T/imunologia , Telômero , Timo/citologia , Adulto Jovem
10.
J Virol ; 79(5): 3217-22, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15709045

RESUMO

Murine gammaherpesvirus 68 (MHV-68), Kaposi's sarcoma-associated herpesvirus (HHV-8), and Epstein-Barr virus (EBV) are all members of the gammaherpesvirus family, characterized by their ability to establish latency in lymphocytes. The RTA protein, conserved in all gammaherpesviruses, is known to play a critical role in reactivation from latency. Here we report that HHV-8 RTA, not EBV RTA, was able to induce MHV-68 lytic viral proteins and DNA replication and processing and produce viable MHV-68 virions from latently infected cells at levels similar to those for MHV-68 RTA. HHV-8 RTA was also able to activate two MHV-68 lytic promoters, whereas EBV RTA was not. In order to define the domains of RTA responsible for their functional differences in viral promoter activation and initiation of the MHV-68 lytic cycle, chimeric RTA proteins were constructed by exchanging the N-terminal and C-terminal domains of the RTA proteins. Our data suggest that the species specificity of MHV-68 RTA resides in the N-terminal DNA binding domain.


Assuntos
Herpesvirus Humano 8/genética , Herpesvirus Humano 8/fisiologia , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/fisiologia , Rhadinovirus/genética , Rhadinovirus/fisiologia , Transativadores/genética , Transativadores/fisiologia , Proteínas Virais/genética , Proteínas Virais/fisiologia , Animais , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/fisiologia , Humanos , Proteínas Imediatamente Precoces/química , Estrutura Terciária de Proteína , Especificidade da Espécie , Transativadores/química , Proteínas Virais/química , Ativação Viral/genética , Ativação Viral/fisiologia , Latência Viral/genética , Latência Viral/fisiologia
11.
J Virol ; 78(17): 9215-23, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15308716

RESUMO

Kaposi's sarcoma-associated herpesvirus and murine gammaherpesvirus-68 (MHV-68) establish latent infections and are associated with various types of malignancies. They are members of the gamma-2 herpesvirus subfamily and encode a replication and transcriptional activator, RTA, which is necessary and sufficient to disrupt latency and initiate the viral lytic cycle in vitro. We have constructed a recombinant MHV-68 virus that overexpresses RTA. This virus has faster replication kinetics in vitro and in vivo, is deficient in establishing latency, exhibits a reduction in the development of a mononucleosis-like disease in mice, and can protect mice against challenge by wild-type MHV-68. The present study, by using MHV-68 as an in vivo model system, demonstrated that RTA plays a critical role in the control of viral latency and suggests that latency is a determinant of viral pathogenesis in vivo.


Assuntos
Rhadinovirus/fisiologia , Superinfecção/prevenção & controle , Superinfecção/virologia , Latência Viral/fisiologia , Animais , Linhagem Celular , Feminino , Regulação Viral da Expressão Gênica , Infecções por Herpesviridae/prevenção & controle , Infecções por Herpesviridae/virologia , Humanos , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Cinética , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Regiões Promotoras Genéticas/genética , Rhadinovirus/genética , Rhadinovirus/patogenicidade , Transativadores/genética , Transativadores/metabolismo , Vacinação , Proteínas Virais/genética , Proteínas Virais/metabolismo , Latência Viral/genética , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA