Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Cancer Med ; 6(12): 2998-3013, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29047224

RESUMO

The Ral (Ras-Like) signaling pathway plays an important role in the biology of cells. A plethora of effects is regulated by this signaling pathway and its prooncogenic effectors. Our team has demonstrated the overactivation of the RalA signaling pathway in a number of human malignancies including cancers of the liver, ovary, lung, brain, and malignant peripheral nerve sheath tumors. Additionally, we have shown that the activation of RalA in cancer stem cells is higher in comparison with differentiated cancer cells. In this article, we review the role of Ral signaling in health and disease with a focus on the role of this multifunctional protein in the generation of therapies for cancer. An improved understanding of this pathway can lead to development of a novel class of anticancer therapies that functions on the basis of intervention with RalA or its downstream effectors.


Assuntos
Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas ral de Ligação ao GTP/metabolismo , Animais , Humanos , Mutação , Neoplasias/genética , Neoplasias/patologia , Neoplasias/terapia , Células-Tronco Neoplásicas/patologia , Terapia Viral Oncolítica , Vírus Oncolíticos/metabolismo , Conformação Proteica , Transdução de Sinais , Relação Estrutura-Atividade , Proteínas ral de Ligação ao GTP/química , Proteínas ral de Ligação ao GTP/genética
3.
J Neurooncol ; 130(1): 99-110, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27566179

RESUMO

Medulloblastoma (MDB) represents a major form of malignant brain tumors in the pediatric population. A vast spectrum of research on MDB has advanced our understanding of the underlying mechanism, however, a significant need still exists to develop novel therapeutics on the basis of gaining new knowledge about the characteristics of cell signaling networks involved. The Ras signaling pathway, one of the most important proto-oncogenic pathways involved in human cancers, has been shown to be involved in the development of neurological malignancies. We have studied an important effector down-stream of Ras, namely RalA (Ras-Like), for the first time and revealed overactivation of RalA in MDB. Affinity precipitation analysis of active RalA (RalA-GTP) in eight MDB cell lines (DAOY, RES256, RES262, UW228-1, UW426, UW473, D283 and D425) revealed that the majority contained elevated levels of active RalA (RalA-GTP) as compared with fetal cerebellar tissue as a normal control. Additionally, total RalA levels were shown to be elevated in 20 MDB patient samples as compared to normal brain tissue. The overall expression of RalA, however, was comparable in cancerous and normal samples. Other important effectors of RalA pathway including RalA binding protein-1 (RalBP1) and protein phosphatase A (PP2A) down-stream of Ral and Aurora kinase A (AKA) as an upstream RalA activator were also investigated in MDB. Considering the lack of specific inhibitors for RalA, we used gene specific silencing in order to inhibit RalA expression. Using a lentivirus expressing anti-RalA shRNA we successfully inhibited RalA expression in MDB and observed a significant reduction in proliferation and invasiveness. Similar results were observed using inhibitors of AKA and geranyl-geranyl transferase (non-specific inhibitors of RalA signaling) in terms of loss of in vivo tumorigenicity in heterotopic nude mouse model. Finally, once tested in cells expressing CD133 (a marker for MDB cancer stem cells), higher levels of RalA activation was observed. These data not only bring RalA to light as an important contributor to the malignant phenotype of MDB but introduces this pathway as a novel target in the treatment of this malignancy.


Assuntos
Neoplasias Encefálicas/metabolismo , Cerebelo/metabolismo , Meduloblastoma/metabolismo , Proteínas ral de Ligação ao GTP/metabolismo , Animais , Aurora Quinase A/genética , Aurora Quinase A/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Cerebelo/patologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Feminino , Feto , Regulação Neoplásica da Expressão Gênica/fisiologia , Inativação Gênica , Humanos , Masculino , Meduloblastoma/patologia , Camundongos , Camundongos Nus , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/fisiologia , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA