Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Clin Cancer Res ; 29(21): 4419-4429, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37756555

RESUMO

PURPOSE: The optimal application of maintenance PARP inhibitor therapy for ovarian cancer requires accessible, robust, and rapid testing of homologous recombination deficiency (HRD). However, in many countries, access to HRD testing is problematic and the failure rate is high. We developed an academic HRD test to support treatment decision-making. EXPERIMENTAL DESIGN: Genomic Instability Scar (GIScar) was developed through targeted sequencing of a 127-gene panel to determine HRD status. GIScar was trained from a noninterventional study with 250 prospectively collected ovarian tumor samples. GIScar was validated on 469 DNA tumor samples from the PAOLA-1 trial evaluating maintenance olaparib for newly diagnosed ovarian cancer, and its predictive value was compared with Myriad Genetics MyChoice (MGMC). RESULTS: GIScar showed significant correlation with MGMC HRD classification (kappa statistics: 0.780). From PAOLA-1 samples, more HRD-positive tumors were identified by GIScar (258) than MGMC (242), with a lower proportion of inconclusive results (1% vs. 9%, respectively). The HRs for progression-free survival (PFS) with olaparib versus placebo were 0.45 [95% confidence interval (CI), 0.33-0.62] in GIScar-identified HRD-positive BRCA-mutated tumors, 0.50 (95% CI, 0.31-0.80) in HRD-positive BRCA-wild-type tumors, and 1.02 (95% CI, 0.74-1.40) in HRD-negative tumors. Tumors identified as HRD positive by GIScar but HRD negative by MGMC had better PFS with olaparib (HR, 0.23; 95% CI, 0.07-0.72). CONCLUSIONS: GIScar is a valuable diagnostic tool, reliably detecting HRD and predicting sensitivity to olaparib for ovarian cancer. GIScar showed high analytic concordance with MGMC test and fewer inconclusive results. GIScar is easily implemented into diagnostic laboratories with a rapid turnaround.


Assuntos
Neoplasias Ovarianas , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Feminino , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Ftalazinas/uso terapêutico , Instabilidade Genômica
2.
Curr Oncol ; 29(4): 2776-2791, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35448200

RESUMO

(1) Background: In literature, approximately 20% of mCRPC present somatic DNA damage repair (DDR) gene mutations, and their relationship with response to standard therapies in mCRPC is not well understood. The objective was to evaluate outcomes of mCRPC patients treated with standard therapies according to somatic DDR status. (2) Methods: Eighty-three patients were recruited at Caen Cancer Center (France). Progression-free survival (PFS) after first-line treatment was analyzed according to somatic DDR mutation as primary endpoint. PFS according to first exposure to taxane chemotherapy and PFS2 (time to second event of disease progression) depending on therapeutic sequences were also analyzed. (3) Results: Median first-line PFS was 9.7 months in 33 mutated patients and 8.4 months in 50 non-mutated patients (p = 0.9). PFS of first exposure to taxanes was 8.1 months in mutated patients and 5.7 months in non-mutated patients (p = 0.32) and significantly longer among patients with ATM/BRCA1/BRCA2 mutations compared to the others (10.6 months vs. 5.5 months, p = 0.04). PFS2 was 16.5 months in mutated patients, whatever the sequence, and 11.7 months in non-mutated patients (p = 0.07). The mutated patients treated with chemotherapy followed by NHT had a long median PFS2 (49.8 months). (4) Conclusions: mCRPC patients with BRCA1/2 and ATM benefit from standard therapies, with a long response to taxanes.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Proteínas Mutadas de Ataxia Telangiectasia/genética , Reparo do DNA/genética , Genes BRCA2 , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Taxoides/uso terapêutico
3.
Genet Med ; 20(12): 1677-1686, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29988077

RESUMO

PURPOSE: Integration of gene panels in the diagnosis of hereditary breast and ovarian cancer (HBOC) requires a careful evaluation of the risk associated with pathogenic or likely pathogenic variants (PVs) detected in each gene. Here we analyzed 34 genes in 5131 suspected HBOC index cases by next-generation sequencing. METHODS: Using the Exome Aggregation Consortium data sets plus 571 individuals from the French Exome Project, we simulated the probability that an individual from the Exome Aggregation Consortium carries a PV and compared it to the estimated frequency within the HBOC population. RESULTS: Odds ratio conferred by PVs within BRCA1, BRCA2, PALB2, RAD51C, RAD51D, ATM, BRIP1, CHEK2, and MSH6 were estimated at 13.22 [10.01-17.22], 8.61 [6.78-10.82], 8.22 [4.91-13.05], 4.54 [2.55-7.48], 5.23 [1.46-13.17], 3.20 [2.14-4.53], 2.49 [1.42-3.97], 1.67 [1.18-2.27], and 2.50 [1.12-4.67], respectively. PVs within RAD51C, RAD51D, and BRIP1 were associated with ovarian cancer family history (OR = 11.36 [5.78-19.59], 12.44 [2.94-33.30] and 3.82 [1.66-7.11]). PALB2 PVs were associated with bilateral breast cancer (OR = 16.17 [5.48-34.10]) and BARD1 PVs with triple-negative breast cancer (OR = 11.27 [3.37-25.01]). Burden tests performed in both patients and the French Exome Project population confirmed the association of PVs of BRCA1, BRCA2, PALB2, and RAD51C with HBOC. CONCLUSION: Our results validate the integration of PALB2, RAD51C, and RAD51D in the diagnosis of HBOC and suggest that the other genes are involved in an oligogenic determinism.


Assuntos
Proteínas de Ligação a DNA/genética , Proteína do Grupo de Complementação N da Anemia de Fanconi/genética , Síndrome Hereditária de Câncer de Mama e Ovário/genética , Adulto , Proteína BRCA1/genética , Proteína BRCA2/genética , França/epidemiologia , Predisposição Genética para Doença , Testes Genéticos , Variação Genética/genética , Síndrome Hereditária de Câncer de Mama e Ovário/diagnóstico , Síndrome Hereditária de Câncer de Mama e Ovário/epidemiologia , Síndrome Hereditária de Câncer de Mama e Ovário/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Fatores de Risco , Sequenciamento do Exoma
4.
Oncotarget ; 7(48): 79485-79493, 2016 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-27825131

RESUMO

Highlighting tumoral mutations is a key step in oncology for personalizing care. Considering the genetic heterogeneity in a tumor, software used for detecting mutations should clearly distinguish real tumor events of interest that could be predictive markers for personalized medicine from false positives. OutLyzer is a new variant-caller designed for the specific and sensitive detection of mutations for research and diagnostic purposes. It is based on statistic and local evaluation of sequencing background noise to highlight potential true positive variants. 130 previously genotyped patients were sequenced after enrichment by capturing the exons of 22 genes. Sequencing data were analyzed by HaplotypeCaller, LofreqStar, Varscan2 and OutLyzer. OutLyzer had the best sensitivity and specificity with a fixed limit of detection for all tools of 1% for SNVs and 2% for Indels. OutLyzer is a useful tool for detecting mutations of interest in tumors including low allele-frequency mutations, and could be adopted in standard practice for delivering targeted therapies in cancer treatment.


Assuntos
Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação , Neoplasias/genética , Análise de Sequência de DNA/métodos , Éxons , Frequência do Gene , Genótipo , Humanos , Medicina de Precisão , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA