Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Res Commun ; 3(8): 1594-1606, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37599786

RESUMO

Despite recent therapeutic advances, the 5-year survival rate for adults with acute myeloid leukemia (AML) is poor and standard-of-care chemotherapy is associated with significant toxicity, highlighting the need for new therapeutic approaches. Recent work from our group and others established that the G protein-coupled estrogen receptor (GPER) is tumor suppressive in melanoma and other solid tumors. We performed a preliminary screen of human cancer cell lines from multiple malignancies and found that LNS8801, a synthetic pharmacologic agonist of GPER currently in early phase clinical trials, promoted apoptosis in human AML cells. Using human AML cell lines and primary cells, we show that LNS8801 inhibits human AML in preclinical in vitro models, while not affecting normal mononuclear cells. Although GPER is broadly expressed in normal and malignant myeloid cells, this cancer-specific LNS8801-induced inhibition appeared to be independent of GPER signaling. LNS8801 induced AML cell death primarily through a caspase-dependent apoptosis pathway. This was independent of secreted classical death receptor ligands, and instead required induction of reactive oxygen species (ROS) and activation of endoplasmic reticulum (ER) stress response pathways including IRE1α. These studies demonstrate a novel activity of LNS8801 in AML cells and show that targeting ER stress with LNS8801 may be a useful therapeutic approach for AML. Significance: Previous work demonstrated that LNS8801 inhibits cancer via GPER activation, especially in solid tumors. Here we show that LNS8801 inhibits AML via GPER-independent mechanisms that include ROS induction and ER activation.


Assuntos
Endorribonucleases , Leucemia Mieloide Aguda , Adulto , Humanos , Espécies Reativas de Oxigênio , Proteínas Serina-Treonina Quinases , Leucemia Mieloide Aguda/tratamento farmacológico , Estrogênios , Estresse do Retículo Endoplasmático
2.
bioRxiv ; 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36945570

RESUMO

GPER (G protein-coupled estrogen receptor) has been reported to play roles in several areas of physiology including cancer, metabolic disorders, and cardiovascular disease. However, the understanding of where this receptor is expressed in human tissue is limited due to limited available tools and methodologies that can reliably detect GPER protein. Recently, a highly specific monoclonal antibody against GPER (20H15L21) was developed and is suitable for immunohistochemistry. Using this antibody, we show that GPER protein expression varies markedly between normal human tissue, and also among cancer tissue. As GPER is an emerging therapeutic target for cancer and other diseases, this new understanding of GPER distribution will likely be helpful in design and interpretation of ongoing and future GPER research.

3.
STAR Protoc ; 4(1): 102101, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36853703

RESUMO

Here, we provide a protocol to model the effects of changes to a small number of cells, such as those arising from a mutation or a virus infection, in stratified epithelia. We describe steps for diluting engineered human keratinocytes into a larger population of unmodified cells and using these cells to grow three-dimensional organotypic cultures. We detail steps to observe effects that are not apparent in homogenous organotypic epithelial cultures by visualizing the localization of modified keratinocytes in epithelial layers. For complete details on the use and execution of this protocol, please refer to Hatterschide et al. (2022).1.


Assuntos
Carcinoma de Células Escamosas , Queratinócitos , Humanos , Epitélio , Células Epiteliais , Células Cultivadas
4.
Nat Commun ; 13(1): 7923, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36564381

RESUMO

Human melanocytic nevi (moles) result from a brief period of clonal expansion of melanocytes. As a cellular defensive mechanism against oncogene-induced hyperplasia, nevus-resident melanocytes enter a senescent state of stable cell cycle arrest. Senescent melanocytes can persist for months in mice and years in humans with a risk to escape the senescent state and progress to melanoma. The mechanisms providing prolonged survival of senescent melanocytes remain poorly understood. Here, we show that senescent melanocytes in culture and in nevi express high level of the anti-apoptotic BCL-2 family member BCL-W but remain insensitive to the pan-BCL-2 inhibitor ABT-263. We demonstrate that resistance to ABT-263 is driven by mTOR-mediated enhanced translation of another anti-apoptotic member, MCL-1. Strikingly, the combination of ABT-263 and MCL-1 inhibitors results in synthetic lethality to senescent melanocytes, and its topical application sufficient to eliminate nevi in male mice. These data highlight the important role of redundant anti-apoptotic mechanisms for the survival advantage of senescent melanocytes, and the proof-of-concept for a non-invasive combination therapy for nevi removal.


Assuntos
Nevo Pigmentado , Nevo , Neoplasias Cutâneas , Masculino , Humanos , Animais , Camundongos , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Melanócitos/metabolismo , Nevo/metabolismo , Neoplasias Cutâneas/metabolismo
5.
Sci Adv ; 8(35): eabn4007, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36054350

RESUMO

Melanoma risk is 30 times higher in people with lightly pigmented skin versus darkly pigmented skin. Using primary human melanocytes representing the full human skin pigment continuum and preclinical melanoma models, we show that cell-intrinsic differences between dark and light melanocytes regulate melanocyte proliferative capacity and susceptibility to malignant transformation, independent of melanin and ultraviolet exposure. These differences result from dihydroxyphenylalanine (DOPA), a melanin precursor synthesized at higher levels in melanocytes from darkly pigmented skin. We used both high-throughput pharmacologic and genetic in vivo CRISPR screens to determine that DOPA limits melanocyte and melanoma cell proliferation by inhibiting the muscarinic acetylcholine receptor M1 (CHRM1) signaling. Pharmacologic CHRM1 antagonism in melanoma leads to depletion of c-Myc and FOXM1, both of which are proliferation drivers associated with aggressive melanoma. In preclinical mouse melanoma models, pharmacologic inhibition of CHRM1 or FOXM1 inhibited tumor growth. CHRM1 and FOXM1 may be new therapeutic targets for melanoma.

6.
Cancer Res ; 81(23): 5991-6003, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34706862

RESUMO

Melanoma and most other cancers occur more frequently and have worse prognosis in males compared with females. Although sex steroids are thought to be involved, classical androgen and estrogen receptors are not detectable in most melanomas. Here we show that testosterone promotes melanoma proliferation by activating ZIP9 (SLC39A9), a zinc transporter that is widely expressed in human melanoma but not intentionally targeted by available therapeutics. This testosterone activity required an influx of zinc, activation of MAPK, and nuclear translocation of YAP. FDA-approved inhibitors of the classical androgen receptor also inhibited ZIP9, thereby antagonizing the protumorigenic effects of testosterone in melanoma. In male mice, androgen receptor inhibitors suppressed growth of ZIP9-expressing melanomas but had no effect on isogenic melanomas lacking ZIP9 or on melanomas in females. These data suggest that ZIP9 might be effectively targeted in melanoma and other cancers by repurposing androgen receptor inhibitors that are currently approved only for prostate cancer. SIGNIFICANCE: Testosterone signaling through ZIP9 mediates some of the sex differences in melanoma, and drugs that target AR can be repurposed to block ZIP9 and inhibit melanoma in males.


Assuntos
Antagonistas de Receptores de Andrógenos/farmacologia , Proteínas de Transporte de Cátions/antagonistas & inibidores , Melanoma/tratamento farmacológico , Receptores Androgênicos/química , Testosterona/farmacologia , Androgênios/farmacologia , Animais , Apoptose , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Movimento Celular , Proliferação de Células , Humanos , Masculino , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Fatores Sexuais , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
7.
J Invest Dermatol ; 140(11): 2114-2116, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33099398

RESUMO

NRAS-driven melanomas frequently develop resistance to MAPK/extracellular signal-regulated kinase kinase inhibitors (MEKis), which limits their therapeutic utility. Nguyen et al. (2020) show that MEKi-resistant cells upregulate phosphoglycerate dehydrogenase (PHGDH), the rate-limiting enzyme in serine synthesis. Suppression of PHGDH rendered cells sensitive to MEKis, suggesting that PHGDH may be a therapeutic target for melanoma.


Assuntos
Melanoma , Preparações Farmacêuticas , GTP Fosfo-Hidrolases , Glutationa , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Proteínas de Membrana , Quinases de Proteína Quinase Ativadas por Mitógeno , Fosfoglicerato Desidrogenase/genética , Fosfoglicerato Desidrogenase/metabolismo , Serina/metabolismo , Regulação para Cima
8.
Cell Mol Gastroenterol Hepatol ; 10(4): 868-880.e1, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32376419

RESUMO

BACKGROUND & AIMS: Female sex is associated with lower incidence and improved clinical outcomes for most cancer types including pancreatic ductal adenocarcinoma (PDAC). The mechanistic basis for this sex difference is unknown. We hypothesized that estrogen signaling may be responsible, despite the fact that PDAC lacks classic nuclear estrogen receptors. METHODS: Here we used murine syngeneic tumor models and human xenografts to determine that signaling through the nonclassic estrogen receptor G protein-coupled estrogen receptor (GPER) on tumor cells inhibits PDAC. RESULTS: Activation of GPER with the specific, small molecule, synthetic agonist G-1 inhibited PDAC proliferation, depleted c-Myc and programmed death ligand 1 (PD-L1), and increased tumor cell immunogenicity. Systemically administered G-1 was well-tolerated in PDAC bearing mice, induced tumor regression, significantly prolonged survival, and markedly increased the efficacy of PD-1 targeted immune therapy. We detected GPER protein in a majority of spontaneous human PDAC tumors, independent of tumor stage. CONCLUSIONS: These data, coupled with the wide tissue distribution of GPER and our previous work showing that G-1 inhibits melanoma, suggest that GPER agonists may be useful against a range of cancers that are not classically considered sex hormone responsive and that arise in tissues outside of the reproductive system.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Receptores Acoplados a Proteínas G/agonistas , Animais , Antineoplásicos/uso terapêutico , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas/metabolismo , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/uso terapêutico
9.
J Cutan Pathol ; 46(5): 310-316, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30666677

RESUMO

BACKGROUND: Accurate classification of spitzoid melanocytic lesions is difficult due to overlapping clinical and histopathologic features between Spitz nevi, atypical Spitz tumors (ASTs), and spitzoid melanomas. Expression of p16 (CDKN2A) has been used as a marker of spitzoid lesions. However, its expression may be variable. p15 is a tumor suppressor encoded by CDKN2B, loss of which has been recently shown to promote transition from nevus to melanoma. We sought to determine whether p15 is a useful immunohistochemical marker to distinguish Spitz nevi from spitzoid melanomas and to compare p15 and p16 staining in this population. METHODS: Immunohistochemistry for p15 and p16 was performed on Spitz nevi (n = 19), ASTs (n = 41), and spitzoid melanomas (n = 17). Immunoexpression was categorized by a four-tiered system: 0 (negative), 1+ (weak), 2+ (moderate), 3+ (strong). RESULTS: 3+/strong p15 staining was observed in 68.4% of Spitz nevi, 34.2% of ASTs, and 17.7% of spitzoid melanomas. By contrast, we observed 3+ p16 staining in roughly equivalent percentages of Spitz nevi (57.9%), ASTs (56.1%), and spitzoid melanomas (58.8%). CONCLUSION: These data illustrate that p15 may be more useful than p16 as a biomarker to help distinguish benign from malignant spitzoid lesions.


Assuntos
Biomarcadores Tumorais/biossíntese , Inibidor de Quinase Dependente de Ciclina p15/biossíntese , Melanoma , Nevo de Células Epitelioides e Fusiformes , Neoplasias Cutâneas , Feminino , Humanos , Imuno-Histoquímica , Masculino , Melanoma/metabolismo , Melanoma/patologia , Nevo de Células Epitelioides e Fusiformes/metabolismo , Nevo de Células Epitelioides e Fusiformes/patologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia
10.
Elife ; 72018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29336307

RESUMO

Female sex and history of prior pregnancies are associated with favorable melanoma outcomes. Here, we show that much of the melanoma protective effect likely results from estrogen signaling through the G protein-coupled estrogen receptor (GPER) on melanocytes. Selective GPER activation in primary melanocytes and melanoma cells induced long-term changes that maintained a more differentiated cell state as defined by increased expression of well-established melanocyte differentiation antigens, increased pigment production, decreased proliferative capacity, and decreased expression of the oncodriver and stem cell marker c-Myc. GPER signaling also rendered melanoma cells more vulnerable to immunotherapy. Systemically delivered GPER agonist was well tolerated, and cooperated with immune checkpoint blockade in melanoma-bearing mice to dramatically extend survival, with up to half of mice clearing their tumor. Complete responses were associated with immune memory that protected against tumor rechallenge. GPER may be a useful, pharmacologically accessible target for melanoma.


Assuntos
Antineoplásicos/uso terapêutico , Melanoma/tratamento farmacológico , Melanoma/patologia , Receptores Acoplados a Proteínas G/agonistas , Transdução de Sinais , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Pigmentos Biológicos , Receptores de Estrogênio , Análise de Sobrevida , Resultado do Tratamento , Células Tumorais Cultivadas
11.
Am J Pathol ; 186(12): 3094-3099, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27855847

RESUMO

Most melanomas are driven by BRAF(V600E)-activating mutations, while nevi harboring the same mutations have growth arrest. Although decreased p16 expression has been associated with melanoma formation, in recent work, p15 represented a primary effector of oncogene-induced senescence in nevomelanocytes that was diminished in melanomas. This study determined whether decreased p15 levels represent a general biomarker for the transition from nevus to melanoma. We performed p15 and p16 IHC analyses on a random series of nevi and melanomas. Staining was evaluated and graded for percentage and intensity to determine the H score. For real-time quantitative RT-PCR analysis of p15, RNA was extracted from FFPE sections from 14 nevus and melanoma samples via macrodissection. A two-sided t-test was used to evaluate between-group differences in mean H scores and qΔCt values. p15 Expression was significantly increased in melanocytic nevi compared with melanomas (mean H scores, 254.8 versus 132.3; P < 0.001). On p15 staining, the H score differential was greater than that with p16 staining [122.5 (P < 0.001) and 64.8 (P = 0.055), respectively]. Real-time quantitative RT-PCR analysis revealed a lower mean qΔCt value in melanomas, consistent with lower p15 expression (P = 0.018). Together, these data support the hypothesis that decreased p15 expression is a robust biomarker for distinguishing nevus from melanoma.


Assuntos
Biomarcadores Tumorais/metabolismo , Inibidor de Quinase Dependente de Ciclina p15/metabolismo , Melanoma/metabolismo , Nevo Pigmentado/metabolismo , Nevo/metabolismo , Neoplasias Cutâneas/metabolismo , Biomarcadores Tumorais/genética , Inibidor de Quinase Dependente de Ciclina p15/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Diagnóstico Diferencial , Humanos , Melanócitos/metabolismo , Melanoma/patologia , Mutação , Nevo/patologia , Nevo Pigmentado/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Neoplasias Cutâneas/patologia
13.
Elife ; 52016 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-27115344

RESUMO

The association between pregnancy and altered cutaneous pigmentation has been documented for over two millennia, suggesting that sex hormones play a role in regulating epidermal melanocyte (MC) homeostasis. Here we show that physiologic estrogen (17ß-estradiol) and progesterone reciprocally regulate melanin synthesis. This is intriguing given that we also show that normal primary human MCs lack classical estrogen or progesterone receptors (ER or PR). Utilizing both genetic and pharmacologic approaches, we establish that sex steroid effects on human pigment synthesis are mediated by the membrane-bound, steroid hormone receptors G protein-coupled estrogen receptor (GPER), and progestin and adipoQ receptor 7 (PAQR7). Activity of these receptors was activated or inhibited by synthetic estrogen or progesterone analogs that do not bind to ER or PR. As safe and effective treatment options for skin pigmentation disorders are limited, these specific GPER and PAQR7 ligands may represent a novel class of therapeutics.


Assuntos
Estrogênios/metabolismo , Melaninas/metabolismo , Progesterona/metabolismo , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Progesterona/metabolismo , Pigmentação da Pele , Células Cultivadas , Humanos , Melanócitos/metabolismo
14.
Cell Rep ; 14(10): 2313-24, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26947070

RESUMO

In the absence of low-level ER-to-mitochondrial Ca(2+) transfer, ATP levels fall, and AMPK-dependent, mTOR-independent autophagy is induced as an essential survival mechanism in many cell types. Here, we demonstrate that tumorigenic cancer cell lines, transformed primary human fibroblasts, and tumors in vivo respond similarly but that autophagy is insufficient for survival, and cancer cells die while their normal counterparts are spared. Cancer cell death is due to compromised bioenergetics that can be rescued with metabolic substrates or nucleotides and caused by necrosis associated with mitotic catastrophe during their proliferation. Our findings reveal an unexpected dependency on constitutive Ca(2+) transfer to mitochondria for viability of tumorigenic cells and suggest that mitochondrial Ca(2+) addiction is a feature of cancer cells.


Assuntos
Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Acetilcisteína/farmacologia , Trifosfato de Adenosina/metabolismo , Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Western Blotting , Linhagem Celular Tumoral , Humanos , Receptores de Inositol 1,4,5-Trifosfato/antagonistas & inibidores , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Compostos Macrocíclicos/farmacologia , Microscopia de Vídeo , Oxazóis/farmacologia , Fosforilação , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
15.
Genes Dev ; 30(3): 321-36, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26833731

RESUMO

Oncogene-induced senescence (OIS) and therapy-induced senescence (TIS), while tumor-suppressive, also promote procarcinogenic effects by activating the DNA damage response (DDR), which in turn induces inflammation. This inflammatory response prominently includes an array of cytokines known as the senescence-associated secretory phenotype (SASP). Previous observations link the transcription-associated methyltransferase and oncoprotein MLL1 to the DDR, leading us to investigate the role of MLL1 in SASP expression. Our findings reveal direct MLL1 epigenetic control over proproliferative cell cycle genes: MLL1 inhibition represses expression of proproliferative cell cycle regulators required for DNA replication and DDR activation, thus disabling SASP expression. Strikingly, however, these effects of MLL1 inhibition on SASP gene expression do not impair OIS and, furthermore, abolish the ability of the SASP to enhance cancer cell proliferation. More broadly, MLL1 inhibition also reduces "SASP-like" inflammatory gene expression from cancer cells in vitro and in vivo independently of senescence. Taken together, these data demonstrate that MLL1 inhibition may be a powerful and effective strategy for inducing cancerous growth arrest through the direct epigenetic regulation of proliferation-promoting genes and the avoidance of deleterious OIS- or TIS-related tumor secretomes, which can promote both drug resistance and tumor progression.


Assuntos
Senescência Celular/genética , Regulação Neoplásica da Expressão Gênica/genética , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Transdução de Sinais/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular , Proliferação de Células , Dano ao DNA , Técnicas de Silenciamento de Genes , Células HEK293 , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Humanos , Inflamação/genética , Células MCF-7 , Proteína de Leucina Linfoide-Mieloide/antagonistas & inibidores , NF-kappa B/metabolismo , Neoplasias/fisiopatologia , Fenótipo
16.
J Cell Sci ; 128(21): 3997-4013, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26359297

RESUMO

Integrins play crucial roles in epithelial adhesion, proliferation, wound healing and cancer. In the epidermis, the roles of many integrin subunits are incompletely defined and mechanistic details regarding their functions are lacking. We performed a multiplexed small hairpin (sh)RNA screen to define roles for each subunit in human organotypic skin. We show that integrin-αv (also known as ITGAV) heterodimers are essential for epidermal generation, with integrin-αv loss driving a keratinocyte G1-S cell cycle block. Surprisingly, integrin αv is not localized within keratinocyte focal adhesions, and instead maintains proliferation by controlling cellular (c)-Myc translation through FAK, p38ß and p90RSK1. These phenotypes depend only on the binding partners of integrin-αv--integrin ß5 and integrin ß6 (also known as ITGB5 and ITGB6, respectively). Through inducible depletion of integrin αv in both normal organotypic epidermis and Ras-driven invasive neoplasia, we show that integrin αv is required for de novo tissue generation and neoplastic invasion but that it is dispensable for epidermal maintenance. Heterodimers of integrin αv with integrin ß5 (integrin αvß5) or integrin ß6 (integrin αvß6) are required to similar extents for neoplastic invasion, thus identifying integrin αvß5 and integrin αvß6 heterodimers as potential therapeutic targets for epidermal squamous cell carcinoma.


Assuntos
Antígenos de Neoplasias/metabolismo , Integrina alfaV/metabolismo , Integrinas/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Receptores de Vitronectina/metabolismo , Adesão Celular/fisiologia , Movimento Celular/fisiologia , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/metabolismo , Imunofluorescência , Adesões Focais/fisiologia , Humanos , Imunoprecipitação , Cadeias beta de Integrinas/metabolismo , Queratinócitos/citologia , Queratinócitos/metabolismo , Melanócitos/citologia , Melanócitos/metabolismo , Pele/citologia , Pele/metabolismo
17.
Cancer Discov ; 5(10): 1072-85, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26183406

RESUMO

UNLABELLED: Deletion of the entire CDKN2B-CDKN2A gene cluster is among the most common genetic events in cancer. The tumor-promoting effects are generally attributed to loss of CDKN2A-encoded p16 and p14ARF tumor suppressors. The degree to which the associated CDKN2B-encoded p15 loss contributes to human tumorigenesis is unclear. Here, we show that CDKN2B is highly upregulated in benign melanocytic nevi, contributes to maintaining nevus melanocytes in a growth-arrested premalignant state, and is commonly lost in melanoma. Using primary melanocytes isolated directly from freshly excised human nevi naturally expressing the common BRAF(V600E)-activating mutation, nevi progressing to melanoma, and normal melanocytes engineered to inducibly express BRAF(V600E), we show that BRAF activation results in reversible, TGFß-dependent, p15 induction that halts proliferation. Furthermore, we engineer human skin grafts containing nevus-derived melanocytes to establish a new, architecturally faithful, in vivo melanoma model, and demonstrate that p15 loss promotes the transition from benign nevus to melanoma. SIGNIFICANCE: Although BRAF(V600E) mutations cause melanocytes to initially proliferate into benign moles, mechanisms responsible for their eventual growth arrest are unknown. Using melanocytes from human moles, we show that BRAF activation leads to a CDKN2B induction that is critical for restraining BRAF oncogenic effects, and when lost, contributes to melanoma.


Assuntos
Inibidor de Quinase Dependente de Ciclina p15/deficiência , Inibidor de Quinase Dependente de Ciclina p15/genética , Melanoma/genética , Melanoma/patologia , Nevo/genética , Nevo/patologia , Animais , Pontos de Checagem do Ciclo Celular/genética , Transformação Celular Neoplásica/genética , Cromatina/genética , Cromatina/metabolismo , Inibidor de Quinase Dependente de Ciclina p15/metabolismo , Análise Mutacional de DNA , Modelos Animais de Doenças , Progressão da Doença , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Humanos , Imuno-Histoquímica , Melanócitos/metabolismo , Melanócitos/patologia , Melanoma/metabolismo , Camundongos , Mutação , Nevo/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Transdução de Sinais , Ativação Transcricional , Fator de Crescimento Transformador beta/metabolismo
18.
J Invest Dermatol ; 135(9): 2258-2265, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25848980

RESUMO

IQ motif-containing GTPase-activating protein (IQGAP) scaffolding proteins regulate many essential cellular processes including growth factor receptor signaling, cytoskeletal rearrangement, adhesion, and proliferation and are highly expressed in many cancers. Using genetically engineered human skin tissue in vivo, we demonstrate that diminished, sub-physiologic expression of IQGAP1 or IQGAP3 is sufficient to maintain normal epidermal homeostasis, whereas significantly higher levels are required to support tumorigenesis. To target this tumor-specific IQGAP requirement in vivo, we engineered epidermal keratinocytes to express individual IQGAP protein domains designed to compete with endogenous IQGAPs for effector protein binding. Expression of the IQGAP1-IQ motif decoy domain in epidermal tissue in vivo inhibits oncogenic Ras-driven mitogen-activated protein kinase signaling and antagonizes tumorigenesis, without disrupting normal epidermal proliferation or differentiation. These findings define essential non-redundant roles for IQGAP1 and IQGAP3 in the epidermis and demonstrate the potential of IQGAP antagonism for cancer therapy.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/metabolismo , Epiderme/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Neoplasias Cutâneas/metabolismo , Proteínas Ativadoras de ras GTPase/metabolismo , Biópsia por Agulha , Western Blotting , Carcinoma de Células Escamosas/patologia , Proliferação de Células , Células Cultivadas , Progressão da Doença , Epiderme/patologia , Proteínas Ativadoras de GTPase/genética , Homeostase/fisiologia , Humanos , Imuno-Histoquímica , Queratinócitos/citologia , Queratinócitos/metabolismo , Estrutura Terciária de Proteína , Valores de Referência , Neoplasias Cutâneas/patologia , Engenharia Tecidual , Proteínas Ativadoras de ras GTPase/genética
19.
Cancer Cell ; 27(3): 315-6, 2015 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-25759014

RESUMO

In this issue of Cancer Cell, two complementary papers by Atwood and colleagues and Sharpe and colleagues show that basal cell carcinomas resistant to the Smoothened (SMO) inhibitor vismodegib frequently harbor SMO mutations that limit drug binding, with mutations at some sites also increasing basal SMO activity.


Assuntos
Anilidas/uso terapêutico , Carcinoma Basocelular/tratamento farmacológico , Carcinoma Basocelular/genética , Resistencia a Medicamentos Antineoplásicos/genética , Piridinas/uso terapêutico , Receptores Acoplados a Proteínas G/genética , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Humanos , Receptor Smoothened
20.
Cancer Biol Ther ; 15(9): 1113-6, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24919121

RESUMO

Kindler syndrome (KS) in humans is a severe skin blistering disease associated with inflammation and increased risk of epidermal squamous cell carcinoma (SCC). This disease is known to be caused by loss-of-function mutations in Kindlin-1, a focal adhesion ß-integrin binding protein. Thus far, it has been unclear what specific signaling events occur in KS keratinocytes to promote tumorigenesis, especially since loss of ß-integrins and focal adhesion complexes has been previously shown to prevent or delay tumor formation. In the April issue of Nature Medicine, Rognoni and colleagues generate a transgenic mouse lacking Kindlin-1 in the epidermis to model the key features of KS, and show that Kindlin-1 regulates Wnt and TGFß signaling independent of ß-integrins. These ß1-integrin-independent functions of Kindlin-1 may contribute to the increased SCC risk in KS patients.


Assuntos
Vesícula , Proteínas de Transporte/fisiologia , Proliferação de Células , Epidermólise Bolhosa , Queratinócitos/metabolismo , Doenças Periodontais , Transtornos de Fotossensibilidade , Pele/citologia , Células-Tronco/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Proteínas Wnt/metabolismo , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA