Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
iScience ; 27(4): 109288, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38532886

RESUMO

RNA-binding proteins (RBPs) are emerging as important regulators of cancer pathogenesis. We reveal that the RBPs LARP4A and LARP4B are differentially overexpressed in osteosarcoma and osteosarcoma lung metastases, as well as in prostate cancer. Depletion of LARP4A and LARP4B reduced tumor growth and metastatic spread in xenografts, as well as inhibiting cell proliferation, motility, and migration. Transcriptomic profiling and high-content multiparametric analyses unveiled a central role for LARP4B, but not LARP4A, in regulating cell cycle progression in osteosarcoma and prostate cancer cells, potentially through modulating key cell cycle proteins such as Cyclins B1 and E2, Aurora B, and E2F1. This first systematic comparison between LARP4A and LARP4B assigns new pro-tumorigenic functions to LARP4A and LARP4B in bone and prostate cancer, highlighting their similarities while also indicating distinct functional differences. Uncovering clear biological roles for these paralogous proteins provides new avenues for identifying tissue-specific targets and potential druggable intervention.

2.
Cell Rep ; 43(4): 113989, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38536816

RESUMO

Attachment of circulating tumor cells to the endothelial cells (ECs) lining blood vessels is a critical step in cancer metastatic colonization, which leads to metastatic outgrowth. Breast and prostate cancers are common malignancies in women and men, respectively. Here, we observe that ß1-integrin is required for human prostate and breast cancer cell adhesion to ECs under shear-stress conditions in vitro and to lung blood vessel ECs in vivo. We identify IQGAP1 and neural Wiskott-Aldrich syndrome protein (NWASP) as regulators of ß1-integrin transcription and protein expression in prostate and breast cancer cells. IQGAP1 and NWASP depletion in cancer cells decreases adhesion to ECs in vitro and retention in the lung vasculature and metastatic lung nodule formation in vivo. Mechanistically, NWASP and IQGAP1 act downstream of Cdc42 to increase ß1-integrin expression both via extracellular signal-regulated kinase (ERK)/focal adhesion kinase signaling at the protein level and by myocardin-related transcription factor/serum response factor (SRF) transcriptionally. Our results identify IQGAP1 and NWASP as potential therapeutic targets to reduce early metastatic dissemination.


Assuntos
Integrina beta1 , Metástase Neoplásica , Fator de Resposta Sérica , Proteínas Ativadoras de ras GTPase , Humanos , Integrina beta1/metabolismo , Integrina beta1/genética , Proteínas Ativadoras de ras GTPase/metabolismo , Proteínas Ativadoras de ras GTPase/genética , Linhagem Celular Tumoral , Fator de Resposta Sérica/metabolismo , Masculino , Feminino , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/genética , Animais , Transativadores/metabolismo , Adesão Celular , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Camundongos , Quinase 1 de Adesão Focal/metabolismo , Quinase 1 de Adesão Focal/genética , Regulação Neoplásica da Expressão Gênica , Proteína cdc42 de Ligação ao GTP/metabolismo
3.
J Cell Sci ; 137(2)2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38180080

RESUMO

RhoU is an atypical member of the Rho family of small G-proteins, which has N- and C-terminal extensions compared to the classic Rho GTPases RhoA, Rac1 and Cdc42, and associates with membranes through C-terminal palmitoylation rather than prenylation. RhoU mRNA expression is upregulated in prostate cancer and is considered a marker for disease progression. Here, we show that RhoU overexpression in prostate cancer cells increases cell migration and invasion. To identify RhoU targets that contribute to its function, we found that RhoU homodimerizes in cells. We map the region involved in this interaction to the C-terminal extension and show that C-terminal palmitoylation is required for self-association. Expression of the isolated C-terminal extension reduces RhoU-induced activation of p21-activated kinases (PAKs), which are known downstream targets for RhoU, and induces cell morphological changes consistent with inhibiting RhoU function. Our results show for the first time that the activity of a Rho family member is stimulated by self-association, and this is important for its activity.


Assuntos
Neoplasias da Próstata , Proteínas rho de Ligação ao GTP , Humanos , Masculino , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo
4.
Mol Biol Cell ; 34(3): ar13, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36598812

RESUMO

Rho GTPases regulate cell morphogenesis and motility under the tight control of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). However, the underlying mechanism(s) that coordinate their spatiotemporal activities, whether separately or together, remain unclear. We show that a prometastatic RhoGAP, ARHGAP8/BPGAP1, binds to inactive Rac1 and localizes to lamellipodia. BPGAP1 recruits the RacGEF Vav1 under epidermal growth factor (EGF) stimulation and activates Rac1, leading to polarized cell motility, spreading, invadopodium formation, and cell extravasation and promotes cancer cell migration. Importantly, BPGAP1 down-regulates local RhoA activity, which influences Rac1 binding to BPGAP1 and its subsequent activation by Vav1. Our results highlight the importance of BPGAP1 in recruiting Vav1 and Rac1 to promote Rac1 activation for cell motility. BPGAP1 also serves to control the timing of Rac1 activation with RhoA inactivation via its RhoGAP activity. BPGAP1, therefore, acts as a dual-function scaffold that recruits Vav1 to activate Rac1 while inactivating RhoA to synchronize both Rho and Rac signaling in cell motility. As epidermal growth factor receptor (EGFR), Vav1, RhoA, Rac1, and BPGAP1 are all associated with cancer metastasis, BPGAP1 could provide a crucial checkpoint for the EGFR-BPGAP1-Vav1-Rac1-RhoA signaling axis for cancer intervention.


Assuntos
Movimento Celular , Proteínas Ativadoras de GTPase , Humanos , Sequência de Aminoácidos , Receptores ErbB/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
5.
Sci Rep ; 12(1): 1463, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35087170

RESUMO

The Rho GTPase family consists of 20 genes encoding intracellular signalling proteins that influence cytoskeletal dynamics, cell migration and cell cycle progression. They are implicated in breast cancer progression but their role in breast cancer aetiology is unknown. As aberrant Rho GTPase activity could be associated with breast cancer, we aimed to determine the potential for a causal role of Rho GTPase gene expression in breast cancer risk, using two-sample Mendelian randomization (MR). MR was undertaken in 122,977 breast cancer cases and 105,974 controls, including 69,501 estrogen receptor positive (ER+) cases and 105,974 controls, and 21,468 ER negative (ER-) cases and 105,974 controls. Single nucleotide polymorphisms (SNPs) underlying expression quantitative trait loci (eQTLs) obtained from normal breast tissue, breast cancer tissue and blood were used as genetic instruments for Rho GTPase expression. As a sensitivity analysis, we undertook co-localisation to examine whether findings reflected shared causal variants or genomic confounding. We identified genetic instruments for 14 of the 20 human Rho GTPases. Using eQTLs obtained from normal breast tissue and normal blood, we identified evidence of a causal role of RHOD in overall and ER+ breast cancers (overall breast cancer: odds ratio (OR) per standard deviation (SD) increase in expression level 1.06; (95% confidence interval (CI) 1.03, 1.09; P = 5.65 × 10-5) and OR 1.22 (95% CI 1.11, 1.35; P = 5.22 × 10-5) in normal breast tissue and blood respectively). There was a consistent direction of association for ER- breast cancer, although the effect-estimate was imprecisely estimated. Using eQTLs from breast cancer tissue and normal blood there was some evidence that CDC42 was negatively associated with overall and ER + breast cancer risk. The evidence from colocalization analyses strongly supported our MR results particularly for RHOD. Our study suggests a potential causal role of increased RHOD gene expression, and, although the evidence is weaker, a potential protective role for CDC42 gene expression, in overall and ER+ breast cancers. These finding warrant validation in independent samples and further biological investigation to assess whether they may be suitable targets for drug targeting.


Assuntos
Neoplasias da Mama/epidemiologia , Predisposição Genética para Doença , Proteínas rho de Ligação ao GTP/genética , Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Estudos de Casos e Controles , Feminino , Regulação Neoplásica da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Análise da Randomização Mendeliana , Razão de Chances , Polimorfismo de Nucleotídeo Único , Fatores de Proteção , Locos de Características Quantitativas , Fatores de Risco , Proteína cdc42 de Ligação ao GTP/genética
6.
Front Immunol ; 13: 1035589, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713380

RESUMO

Introduction: Chronic Chagasic cardiomyopathy (CCC), caused by the protozoan Trypanosoma cruzi, is the most severe manifestation of Chagas disease.CCC is characterized by cardiac inflammation and fibrosis caused by a persistent inflammatory response. Following infection, macrophages secrete inflammatory mediators such as IL-1ß, IL-6, and TNF-α to control parasitemia. Although this response contains parasite infection, it causes damage to the heart tissue. Thus, the use of immunomodulators is a rational alternative to CCC. Rho-associated kinase (ROCK) 1 and 2 are RhoA-activated serine/threonine kinases that regulate the actomyosin cytoskeleton. Both ROCKs have been implicated in the polarization of macrophages towards an M1 (pro-inflammatory) phenotype. Statins are FDA-approved lipid-lowering drugs that reduce RhoA signaling by inhibiting geranylgeranyl pyrophosphate (GGPP) synthesis. This work aims to identify the effect of statins on U937 macrophage polarization and cardiac tissue inflammation and its relationship with ROCK activity during T. cruzi infection. Methods: PMA-induced, wild-type, GFP-, CA-ROCK1- and CA-ROCK2-expressing U937 macrophages were incubated with atorvastatin, or the inhibitors Y-27632, JSH-23, TAK-242, or C3 exoenzyme incubated with or without T. cruzi trypomastigotes for 30 min to evaluate the activity of ROCK and the M1 and M2 cytokine expression and secretion profiling. Also, ROCK activity was determined in T. cruzi-infected, BALB/c mice hearts. Results: In this study, we demonstrate for the first time in macrophages that incubation with T. cruzi leads to ROCK activation via the TLR4 pathway, which triggers NF-κB activation. Inhibition of ROCKs by Y-27632 prevents NF-κB activation and the expression and secretion of M1 markers, as does treatment with atorvastatin. Furthermore, we show that the effect of atorvastatin on the NF-kB pathway and cytokine secretion is mediated by ROCK. Finally, statin treatment decreased ROCK activation and expression, and the pro-inflammatory cytokine production, promoting anti-inflammatory cytokine expression in chronic chagasic mice hearts. Conclusion: These results suggest that the statin modulation of the inflammatory response due to ROCK inhibition is a potential pharmacological strategy to prevent cardiac inflammation in CCC.


Assuntos
Cardiomiopatias , Doença de Chagas , Inibidores de Hidroximetilglutaril-CoA Redutases , Trypanosoma cruzi , Humanos , Animais , Camundongos , Trypanosoma cruzi/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Quinases Associadas a rho/metabolismo , NF-kappa B/metabolismo , Atorvastatina/farmacologia , Células U937 , Macrófagos/metabolismo , Doença de Chagas/genética , Citocinas/metabolismo , Cardiomiopatias/metabolismo , Inflamação/metabolismo
7.
Methods Mol Biol ; 2294: 93-109, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33742396

RESUMO

Adhesion between cancer cells and endothelial cells, lining the blood vessels, is an important event in tumor progression and metastasis formation. The expression of Rho GTPases is frequently altered in cancers, and they are known to regulate cell migration through their effects on adhesion and cytoskeletal dynamics. Several different types of assays are used to investigate how cancer cells attach to and cross the endothelium. Here, we describe an in vitro technique to study the effects of Rho GTPases on human cancer cell adhesion to endothelial cells under shear stress coupled to live cell imaging.


Assuntos
Adesão Celular , Ensaios de Migração Celular/métodos , Células Endoteliais/metabolismo , Microfluídica/métodos , Imagem com Lapso de Tempo/métodos , Proteínas rho de Ligação ao GTP/metabolismo , Ensaios de Migração Celular/instrumentação , Células Endoteliais/fisiologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Microfluídica/instrumentação , Células PC-3 , Estresse Mecânico , Imagem com Lapso de Tempo/instrumentação
8.
Small GTPases ; 12(1): 20-26, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-30449238

RESUMO

RhoA and RhoC contribute to the regulation of glutamine metabolism, which is a crucial determinant of cell growth in some types of cancer. Here we investigated the participation of RhoA and RhoC in the response of prostate cancer cells to glutamine deprivation. We found that RhoA and RhoC activities were up- or downregulated by glutamine reduction in PC3 and LNCaP cell lines, which was concomitant to a reduction in cell number and proliferation. Stable overexpression of wild type RhoA or RhoC did not alter the sensitivity to glutamine deprivation. However, PC3 cells expressing dominant negative RhoAN19 or RhoCN19 mutants were more resistant to glutamine deprivation. Our results indicate that RhoA and RhoC activities could affect cancer treatments targeting the glutamine pathway.


Assuntos
Glutamina
9.
Front Cell Dev Biol ; 8: 222, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32309283

RESUMO

As key regulators of cytoskeletal dynamics, Rho GTPases coordinate a wide range of cellular processes, including cell polarity, cell migration, and cell cycle progression. The adoption of a pro-migratory phenotype enables cancer cells to invade the stroma surrounding the primary tumor and move toward and enter blood or lymphatic vessels. Targeting these early events could reduce the progression to metastatic disease, the leading cause of cancer-related deaths. Rho GTPases play a key role in the formation of dynamic actin-rich membrane protrusions and the turnover of cell-cell and cell-extracellular matrix adhesions required for efficient cancer cell invasion. Here, we discuss the roles of Rho GTPases in cancer, their validation as therapeutic targets and the challenges of developing clinically viable Rho GTPase inhibitors. We review other therapeutic targets in the wider Rho GTPase signaling network and focus on the four best characterized effector families: p21-activated kinases (PAKs), Rho-associated protein kinases (ROCKs), atypical protein kinase Cs (aPKCs), and myotonic dystrophy kinase-related Cdc42-binding kinases (MRCKs).

10.
Carcinogenesis ; 41(10): 1432-1443, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31957805

RESUMO

A key challenge in the implementation of anti-metastatics as cancer therapies is the multi-modal nature of cell migration, which allows tumour cells to evade the targeted inhibition of specific cell motility pathways. The nuclear factor-kappaB (NF-κB) co-factor B-cell lymphoma 3 (Bcl-3) has been implicated in breast cancer cell migration and metastasis, yet it remains to be determined exactly which cell motility pathways are controlled by Bcl-3 and whether migrating tumour cells are able to evade Bcl-3 intervention. Addressing these questions and the mechanism underpinning Bcl-3's role in this process would help determine its potential as a therapeutic target. Here we identify Bcl-3 as an upstream regulator of the two principal forms of breast cancer cell motility, involving collective and single-cell migration. This was found to be mediated by the master regulator Cdc42 through binding of the NF-κB transcription factor p50 to the Cdc42 promoter. Notably, Bcl-3 depletion inhibited both stable and transitory motility phenotypes in breast cancer cells with no evidence of migratory adaptation. Overexpression of Bcl-3 enhanced migration and increased metastatic tumour burden of breast cancer cells in vivo, whereas overexpression of a mutant Bcl-3 protein, which is unable to bind p50, suppressed cell migration and metastatic tumour burden suggesting that disruption of Bcl-3/NF-κB complexes is sufficient to inhibit metastasis. These findings identify a novel role for Bcl-3 in intrinsic and adaptive multi-modal cell migration mediated by its direct regulation of the Rho GTPase Cdc42 and identify the upstream Bcl-3:p50 transcription complex as a potential therapeutic target for metastatic disease.


Assuntos
Proteína 3 do Linfoma de Células B/fisiologia , Neoplasias da Mama/patologia , Movimento Celular , Subunidade p50 de NF-kappa B/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Animais , Proteína 3 do Linfoma de Células B/genética , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Subunidade p50 de NF-kappa B/genética
11.
Biochem J ; 476(17): 2499-2514, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31431478

RESUMO

RhoBTB1 is an atypical Rho GTPase with two BTB domains in addition to its Rho domain. Although most Rho GTPases regulate actin cytoskeletal dynamics, RhoBTB1 is not known to affect cell shape or motility. We report that RhoBTB1 depletion increases prostate cancer cell invasion and induces elongation in Matrigel, a phenotype similar to that induced by depletion of ROCK1 and ROCK2. We demonstrate that RhoBTB1 associates with ROCK1 and ROCK2 and its association with ROCK1 is via its Rho domain. The Rho domain binds to the coiled-coil region of ROCK1 close to its kinase domain. We identify two amino acids within the Rho domain that alter RhoBTB1 association with ROCK1. RhoBTB1 is a substrate for ROCK1, and mutation of putative phosphorylation sites reduces its association with Cullin3, a scaffold for ubiquitin ligases. We propose that RhoBTB1 suppresses cancer cell invasion through interacting with ROCKs, which in turn regulate its association with Cullin3. Via Cullin3, RhoBTB1 has the potential to affect protein degradation.


Assuntos
Proteínas de Neoplasias/metabolismo , Neoplasias da Próstata/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Quinases Associadas a rho/metabolismo , Animais , Células COS , Chlorocebus aethiops , Proteínas Culina/genética , Proteínas Culina/metabolismo , Células HeLa , Humanos , Masculino , Invasividade Neoplásica , Proteínas de Neoplasias/genética , Células PC-3 , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteínas rho de Ligação ao GTP/genética , Quinases Associadas a rho/genética
12.
Cancer Lett ; 456: 59-68, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31042587

RESUMO

The IGF1R/IRS1 signaling is activated in acute lymphoblastic leukemia (ALL) and can be targeted by the pharmacological inhibitors NT157 (IGF1R-IRS1/2 inhibitor) and OSI-906 (IGF1R/IR inhibitor). Here we investigate the cellular and molecular effects of NT157 and OSI-906 in ALL cells. NT157 and OSI-906 treatment reduced viability, proliferation and cell cycle progression in ALL cell lines. Similarly, in primary samples of patients with ALL, both OSI-906 and NT157 reduced viability, but only NT157 induced apoptosis. NT157 and OSI-906 did not show cytotoxicity in primary samples from healthy donor. NT157 and OSI-906 significantly decreased Jurkat cell migration, but did not modulate Namalwa migration. Consistent with the more potent effect of NT157 on cells, NT157 significantly modulated expression of 25 genes related to the MAPK signaling pathway in Jurkat cells, including oncogenes and tumor suppressor genes. Both compounds inhibited mTOR and p70S6K activity, but only NT157 inhibited AKT and 4-EBP1 activation. In summary, in ALL cells, NT157 has cytotoxic activity, whereas OSI-906 is cytostatic. NT157 has a stronger effect on ALL cells, and thus the direct inhibition of IRS1 may be a potential therapeutic target in ALL.


Assuntos
Antineoplásicos/farmacologia , Imidazóis/farmacologia , Proteínas Substratos do Receptor de Insulina/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Pirazinas/farmacologia , Pirogalol/análogos & derivados , Receptor IGF Tipo 1/antagonistas & inibidores , Sulfonamidas/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Adulto , Idoso , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Proteínas Substratos do Receptor de Insulina/metabolismo , Células Jurkat , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Leucemia-Linfoma Linfoblástico de Células Precursoras/enzimologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Pirogalol/farmacologia , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais , Células Tumorais Cultivadas , Adulto Jovem
13.
J Clin Invest ; 129(5): 1845-1862, 2019 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-30907747

RESUMO

Because metastasis is associated with the majority of cancer-related deaths, its prevention is a clinical aspiration. Prostanoids are a large family of bioactive lipids derived from the activity of cyclooxygenase-1 (COX-1) and COX-2. Aspirin impairs the biosynthesis of all prostanoids through the irreversible inhibition of both COX isoforms. Long-term administration of aspirin leads to reduced distant metastases in murine models and clinical trials, but the COX isoform, downstream prostanoid, and cell compartment responsible for this effect are yet to be determined. Here, we have shown that aspirin dramatically reduced lung metastasis through inhibition of COX-1 while the cancer cells remained intravascular and that inhibition of platelet COX-1 alone was sufficient to impair metastasis. Thromboxane A2 (TXA2) was the prostanoid product of COX-1 responsible for this antimetastatic effect. Inhibition of the COX-1/TXA2 pathway in platelets decreased aggregation of platelets on tumor cells, endothelial activation, tumor cell adhesion to the endothelium, and recruitment of metastasis-promoting monocytes/macrophages, and diminished the formation of a premetastatic niche. Thus, platelet-derived TXA2 orchestrates the generation of a favorable intravascular metastatic niche that promotes tumor cell seeding and identifies COX-1/TXA2 signaling as a target for the prevention of metastasis.


Assuntos
Aspirina/farmacologia , Plaquetas/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase/farmacologia , Metástase Neoplásica/tratamento farmacológico , Tromboxano A2/antagonistas & inibidores , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Plaquetas/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Pulmonares , Macrófagos/metabolismo , Melanoma Experimental , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Transplante de Neoplasias , Agregação Plaquetária , Inibidores da Agregação Plaquetária/farmacologia , Prostaglandinas/metabolismo , Isoformas de Proteínas , Trombose
14.
BMC Cell Biol ; 19(1): 26, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30509168

RESUMO

BACKGROUND: Endothelial cells provide a barrier between blood and tissues, which is regulated to allow molecules and cells in out of tissues. Patients with cerebral cavernous malformations (CCM) have dilated leaky blood vessels, especially in the central nervous system. A subset of these patients has loss-of-function mutations in CCM3. CCM3 is part of the STRIPAK protein complex that includes the little-characterized proteins FAM40A and FAM40B. RESULTS: We show here that FAM40A and FAM40B can interact with CCM3. Knockdown of CCM3, FAM40A or FAM40B in endothelial cells by RNAi causes an increase in stress fibers and a reduction in loop formation in an in vitro angiogenesis assay, which can be reverted by inhibiting the Rho-regulated ROCK kinases. FAM40B depletion also increases endothelial permeability. CONCLUSIONS: These results demonstrate the importance of the FAM40 proteins for endothelial cell physiology, and suggest that they act as part of the CCM3-containing STRIPAK complex.


Assuntos
Proteínas de Transporte/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Quinases Associadas a rho/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Células COS , Permeabilidade da Membrana Celular , Chlorocebus aethiops , Proteínas do Citoesqueleto , Humanos , Proteínas de Membrana/metabolismo , Cadeias Leves de Miosina/metabolismo , Neovascularização Fisiológica , Proteínas de Ligação a Fosfato , Fosforilação , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Fibras de Estresse/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
15.
Blood Adv ; 2(13): 1551-1561, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29970392

RESUMO

CD38 is a transmembrane exoenzyme that is associated with poor prognosis in chronic lymphocytic leukemia (CLL). High CD38 levels in CLL cells are linked to increased cell migration, but the molecular basis is unknown. CD38 produces nicotinic acid adenine dinucleotide phosphate and adenosine 5'-diphosphate-ribose, both of which can act to increase intracellular Ca2+ levels. Here we show that CD38 expression increases basal intracellular Ca2+ levels and stimulates CLL cell migration both with and without chemokine stimulation. We find that CD38 acts via intracellular Ca2+ to increase the activity of the Ras family GTPase Rap1, which is in turn regulated by the Ca2+-sensitive Rap1 guanine-nucleotide exchange factor RasGRP2. Both Rap1 and RasGRP2 are required for CLL cell migration, and RasGRP2 is polarized in primary CLL cells with high CD38 levels. These results indicate that CD38 promotes RasGRP2/Rap1-mediated CLL cell adhesion and migration by increasing intracellular Ca2+ levels.


Assuntos
ADP-Ribosil Ciclase 1/fisiologia , Sinalização do Cálcio/fisiologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , Glicoproteínas de Membrana/fisiologia , Proteínas rap1 de Ligação ao GTP/metabolismo , Adesão Celular , Linhagem Celular , Movimento Celular , Células HEK293 , Humanos , Células Tumorais Cultivadas
16.
BMC Biol ; 16(1): 29, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29510700

RESUMO

BACKGROUND: Cell migration is essential for development and tissue repair, but it also contributes to disease. Rho GTPases regulate cell migration, but a comprehensive analysis of how each Rho signalling component affects migration has not been carried out. RESULTS: Through an RNA interference screen, and using a prostate cancer cell line, we find that approximately 25% of Rho network components alter migration. Some genes enhance migration while others decrease basal and/or hepatocyte growth factor-stimulated migration. Surprisingly, we identify RhoH as a screen hit. RhoH expression is normally restricted to haematopoietic cells, but we find it is expressed in multiple epithelial cancer cell lines. High RhoH expression in samples from prostate cancer patients correlates with earlier relapse. RhoH depletion reduces cell speed and persistence and decreases migratory polarity. Rac1 activity normally localizes to the front of migrating cells at areas of dynamic membrane movement, but in RhoH-depleted cells active Rac1 is localised around the whole cell periphery and associated with membrane regions that are not extending or retracting. RhoH interacts with Rac1 and with several p21-activated kinases (PAKs), which are Rac effectors. Similar to RhoH depletion, PAK2 depletion increases cell spread area and reduces cell migration. In addition, RhoH depletion reduces lamellipodium extension induced by PAK2 overexpression. CONCLUSIONS: We describe a novel role for RhoH in prostate cancer cell migration. We propose that RhoH promotes cell migration by coupling Rac1 activity and PAK2 to membrane protrusion. Our results also suggest that RhoH expression levels correlate with prostate cancer progression.


Assuntos
Movimento Celular/genética , Testes Genéticos/métodos , Neoplasias da Próstata/genética , Interferência de RNA/fisiologia , Fatores de Transcrição/genética , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/genética , Animais , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Células COS , Chlorocebus aethiops , Detecção Precoce de Câncer/métodos , Células HT29 , Humanos , Células MCF-7 , Masculino , Neoplasias da Próstata/diagnóstico , Fatores de Transcrição/análise , Proteínas rac1 de Ligação ao GTP/análise , Proteínas rho de Ligação ao GTP/análise
17.
Small GTPases ; 9(5): 384-393, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-27875099

RESUMO

RhoB is a Rho family GTPase that is highly similar to RhoA and RhoC, yet has distinct functions in cells. Its unique C-terminal region is subject to specific post-translational modifications that confer different localization and functions to RhoB. Apart from the common role with RhoA and RhoC in actin organization and cell migration, RhoB is also implicated in a variety of other cellular processes including membrane trafficking, cell proliferation, DNA-repair and apoptosis. RhoB is not an essential gene in mice, but it is implicated in several physiological and pathological processes. Its multiple roles will be discussed in this review.


Assuntos
Doença , Proteína rhoB de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Animais , Crescimento e Desenvolvimento , Humanos , Neoplasias/enzimologia , Neovascularização Fisiológica , Proteína rhoB de Ligação ao GTP/química
18.
Cancer Cell ; 32(5): 701-715.e7, 2017 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-29136510

RESUMO

Bladder cancer incurs a higher lifetime treatment cost than other cancers due to frequent recurrence of non-invasive disease. Improved prognostic biomarkers and localized therapy are needed for this large patient group. We defined two major genomic subtypes of primary stage Ta tumors. One of these was characterized by loss of 9q including TSC1, increased KI67 labeling index, upregulated glycolysis, DNA repair, mTORC1 signaling, features of the unfolded protein response, and altered cholesterol homeostasis. Comparison with muscle-invasive bladder cancer mutation profiles revealed lower overall mutation rates and more frequent mutations in RHOB and chromatin modifier genes. More mutations in the histone lysine demethylase KDM6A were present in non-invasive tumors from females than males.


Assuntos
Carcinoma de Células de Transição/metabolismo , Histona Desmetilases/genética , Metabolômica/métodos , Mutação , Proteínas Nucleares/genética , Neoplasias da Bexiga Urinária/metabolismo , Carcinoma de Células de Transição/genética , Carcinoma de Células de Transição/patologia , Linhagem Celular Tumoral , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Frequência do Gene , Genômica/métodos , Células HEK293 , Histona Desmetilases/metabolismo , Humanos , Masculino , Metaboloma/genética , Proteínas Nucleares/metabolismo , Fatores Sexuais , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia
19.
Cancer Med ; 5(11): 3353-3367, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27734632

RESUMO

Cancer survival rates are increasing, and as a result, more cancer survivors are exposed to the risk of developing a second primary cancer (SPC). It has been hypothesized that one of the underlying mechanisms for this risk could be mediated by variations in insulin-like growth factor-1 (IGF-1). This review summarizes the current epidemiological evidence to identify whether IGF-1 plays a role in the development of SPCs. IGF-1 is known to promote cancer development by inhibiting apoptosis and stimulating cell proliferation. Epidemiological studies have reported a positive association between circulating IGF-1 levels and various primary cancers, such as breast, colorectal, and prostate cancer. The role of IGF-1 in increasing SPC risk has been explored less. Nonetheless, several experimental studies have observed a deregulation of the IGF-1 pathway, which may explain the association between IGF-1 and SPCs. Thus, measuring serum IGF-1 may serve as a useful marker in assessing the risk of SPCs, and therefore, more translational experimental and epidemiological studies are needed to further disentangle the role of IGF-1 in the development of specific SPCs.


Assuntos
Suscetibilidade a Doenças , Fator de Crescimento Insulin-Like I/metabolismo , Segunda Neoplasia Primária/etiologia , Segunda Neoplasia Primária/metabolismo , Transformação Celular Neoplásica/metabolismo , Humanos , Segunda Neoplasia Primária/diagnóstico , Segunda Neoplasia Primária/epidemiologia , Receptor IGF Tipo 1/metabolismo , Risco
20.
Small GTPases ; 7(4): 207-221, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27628050

RESUMO

Rho GTPases are well known for their roles in regulating cell migration, and also contribute to a variety of other cellular responses. They are subdivided into 2 groups: typical and atypical. The typical Rho family members, including RhoA, Rac1 and Cdc42, cycle between an active GTP-bound and inactive GDP-bound conformation, and are regulated by GEFs, GAPs and GDIs, whereas atypical Rho family members have amino acid substitutions that alter their ability to interact with GTP/GDP and hence are regulated by different mechanisms. Both typical and atypical Rho GTPases contribute to cancer progression. In a few cancers, RhoA or Rac1 are mutated, but in most cancers expression levels and/or activity of Rho GTPases is altered. Rho GTPase signaling could therefore be therapeutically targeted in cancer treatment.


Assuntos
Neoplasias/metabolismo , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo , Substituição de Aminoácidos , Animais , Movimento Celular , Progressão da Doença , Humanos , Neoplasias/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA