Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 127(3): 830-842, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28134624

RESUMO

Disruption of the retinoblastoma (RB) tumor suppressor pathway, either through genetic mutation of upstream regulatory components or mutation of RB1 itself, is believed to be a required event in cancer. However, genetic alterations in the RB-regulated E2F family of transcription factors are infrequent, casting doubt on a direct role for E2Fs in driving cancer. In this work, a mutation analysis of human cancer revealed subtle but impactful copy number gains in E2F1 and E2F3 in hepatocellular carcinoma (HCC). Using a series of loss- and gain-of-function alleles to dial E2F transcriptional output, we have shown that copy number gains in E2f1 or E2f3b resulted in dosage-dependent spontaneous HCC in mice without the involvement of additional organs. Conversely, germ-line loss of E2f1 or E2f3b, but not E2f3a, protected mice against HCC. Combinatorial mapping of chromatin occupancy and transcriptome profiling identified an E2F1- and E2F3B-driven transcriptional program that was associated with development and progression of HCC. These findings demonstrate a direct and cell-autonomous role for E2F activators in human cancer.


Assuntos
Carcinoma Hepatocelular , Fator de Transcrição E2F1 , Fator de Transcrição E2F3 , Dosagem de Genes , Genes Neoplásicos , Neoplasias Hepáticas , Proteínas de Neoplasias , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F3/genética , Fator de Transcrição E2F3/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
2.
Mol Cancer Res ; 5(8): 833-45, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17699109

RESUMO

Hepatocyte growth factor (HGF), a cytokine of tumor microenvironment, exerts opposite effects on CXCR4 expression in MCF-7 (low invasive) and MDA-MB231 (highly invasive) breast carcinoma cells, and here, we show that completely different molecular mechanisms downstream of c-Src activation were involved. As experimental models, we used cells transfected with two CXCR4 promoter constructs and treated with HGF or cotransfected with c-Src wild-type (Srcwt) expression vector; phospho-c-Src formation was enhanced in both cell lines. In MCF-7 cells, consistent with activations of CXCR4Luc constructs after HGF treatment and Srcwt expression, Ets1 and nuclear factor-kappaB (NF-kappaB) transcription factors were activated. In contrast, in MDA-MB231 cells, CXCR4Luc construct, Ets1 and NF-kappaB activities decreased. The divergence point seemed to be downstream of HGF/c-Src and consisted in the interaction between c-Src and the substrate histone deacetylase 3 (HDAC3). Only in MDA-MB231 cells, HDAC3 level was enhanced in membranes and nuclei 30 min after HGF and colocalized/coimmunoprecipitated with phospho-c-Src and phosphotyrosine. Thus, the CXCR4 induction by HGF in MCF-7 cells required NF-kappaB and Ets1 activations, downstream of phosphoinositide-3-kinase/Akt, whereas in HGF-treated MDA-MB231 cells, HDAC3 activation via c-Src probably caused a reduction of transcription factor activities, such as that of NF-kappaB. These results indicate possible roles of HGF in invasive growth of breast carcinomas. By enhancing CXCR4 in low invasive tumor cells, HGF probably favors their homing to secondary sites, whereas by suppressing CXCR4 in highly invasive cells, HGF might participate to retain them in the metastatic sites.


Assuntos
Neoplasias da Mama/patologia , Fator de Crescimento de Hepatócito/farmacologia , Histona Desacetilases/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Receptores CXCR4/metabolismo , Western Blotting , Neoplasias da Mama/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Imunoprecipitação , NF-kappa B/genética , NF-kappa B/metabolismo , Invasividade Neoplásica , Fosforilação , Regiões Promotoras Genéticas/genética , Receptores CXCR4/genética , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA