Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(6): e2208866120, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36716368

RESUMO

Canine distemper virus (CDV) is an enveloped RNA morbillivirus that triggers respiratory, enteric, and high incidence of severe neurological disorders. CDV induces devastating outbreaks in wild and endangered animals as well as in domestic dogs in countries associated with suboptimal vaccination programs. The receptor-binding tetrameric attachment (H)-protein is part of the morbilliviral cell entry machinery. Here, we present the cryo-electron microscopy (cryo-EM) structure and supramolecular organization of the tetrameric CDV H-protein ectodomain. The structure reveals that the morbilliviral H-protein is composed of three main domains: stalk, neck, and heads. The most unexpected feature was the inherent asymmetric architecture of the CDV H-tetramer being shaped by the neck, which folds into an almost 90° bent conformation with respect to the stalk. Consequently, two non-contacting receptor-binding H-head dimers, which are also tilted toward each other, are located on one side of an intertwined four helical bundle stalk domain. Positioning of the four protomer polypeptide chains within the neck domain is guided by a glycine residue (G158), which forms a hinge point exclusively in two protomer polypeptide chains. Molecular dynamics simulations validated the stability of the asymmetric structure under near physiological conditions and molecular docking showed that two receptor-binding sites are fully accessible. Thus, this spatial organization of the CDV H-tetramer would allow for concomitant protein interactions with the stalk and head domains without steric clashes. In summary, the structure of the CDV H-protein ectodomain provides new insights into the morbilliviral cell entry system and offers a blueprint for next-generation structure-based antiviral drug discovery.


Assuntos
Vírus da Cinomose Canina , Cinomose , Animais , Cães , Vírus da Cinomose Canina/genética , Simulação de Acoplamento Molecular , Microscopia Crioeletrônica , Subunidades Proteicas , Glicoproteínas
2.
Nanomedicine ; 47: 102607, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36167305

RESUMO

Extracellular vesicles (EVs), nanovesicles released by cells to effectively exchange biological information, are gaining interest as drug delivery system. Yet, analogously to liposomes, they show short blood circulation times and accumulation in the liver and the spleen. For tissue specific delivery, EV surfaces will thus have to be functionalized. We present a novel platform for flexible modification of EVs with target-specific ligands based on the avidin-biotin system. Genetic engineering of donor cells with a glycosylphosphatidylinositol-anchored avidin (GPI-Av) construct allows the isolation of EVs displaying avidin on their surface, functionalized with any biotinylated ligand. For proof of concept, GPI-Av EVs were modified with i) a biotinylated antibody or ii) de novo designed and synthesized biotinylated ligands binding carbonic anhydrase IX (CAIX), a membrane associated enzyme overexpressed in cancer. Functionalized EVs showed specific binding and uptake by CAIX-expressing cells, demonstrating the power of the system to prepare EVs for cell-specific drug delivery.


Assuntos
Vesículas Extracelulares , Diagnóstico por Imagem
3.
Int J Mol Sci ; 23(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36292935

RESUMO

SUMOylation is a reversible post-translational modification (PTM) involving covalent attachment of small ubiquitin-related modifier (SUMO) proteins to substrate proteins. Dysregulation of SUMOylation and deSUMOylation results in cellular malfunction and is linked to various diseases, such as cancer. Sentrin-specific proteases (SENPs) were identified for the maturation of SUMOs and the deconjugation of SUMOs from their substrate proteins. Hence, this is a promising target tackling the dysregulation of the SUMOylation process. Herein, we report the discovery of a novel protein-protein interaction (PPI) inhibitor for SENP1-SUMO1 by virtual screening and subsequent medicinal chemistry optimization of the hit molecule. The optimized inhibitor ZHAWOC8697 showed IC50 values of 8.6 µM against SENP1 and 2.3 µM against SENP2. With a photo affinity probe the SENP target was validated. This novel SENP inhibitor represents a new valuable tool for the study of SUMOylation processes and the SENP-associated development of small molecule-based treatment options.


Assuntos
Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina , Sumoilação , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Piruvatos , Endopeptidases/metabolismo , Peptídeo Hidrolases/metabolismo
4.
Drug Discov Today ; 26(4): 1097-1105, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33497830

RESUMO

Owing to their structural diversity, peptides are a unique source of innovative active ingredients. However, their development has been challenging because of their disadvantageous pharmacokinetic (PK) properties. Over the past decade, many attempts have been made to improve the oral bioavailability of peptide drugs. In this review, we highlight the most recent and promising techniques aimed at the improvement of the oral bioavailability of peptides. The most recent findings will influence future approaches of pharmaceutical companies in the development of new, more efficient, and safer orally delivered peptides.


Assuntos
Administração Oral , Sistemas de Liberação de Medicamentos/métodos , Peptídeos , Disponibilidade Biológica , Descoberta de Drogas/tendências , Humanos , Peptídeos/farmacocinética , Peptídeos/uso terapêutico
5.
Viruses ; 13(1)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477492

RESUMO

Canine distemper virus (CDV), a close relative of the human pathogen measles virus (MeV), is an enveloped, negative sense RNA virus that belongs to the genus Morbillivirus and causes severe diseases in dogs and other carnivores. Although the vaccination is available as a preventive measure against the disease, the occasional vaccination failure highlights the importance of therapeutic alternatives such as antivirals against CDV. The morbilliviral cell entry system relies on two interacting envelope glycoproteins: the attachment (H) and fusion (F) proteins. Here, to potentially discover novel entry inhibitors targeting CDV H, F and/or the cognate receptor: signaling lymphocyte activation molecule (SLAM) proteins, we designed a quantitative cell-based fusion assay that matched high-throughput screening (HTS) settings. By screening two libraries of small molecule compounds, we successfully identified two membrane fusion inhibitors (F2736-3056 and F2261-0043). Although both inhibitors exhibited similarities in structure and potency with the small molecule compound 3G (an AS-48 class morbilliviral F-protein inhibitor), F2736-3056 displayed improved efficacy in blocking fusion activity when a 3G-escape variant was employed. Altogether, we present a cell-based fusion assay that can be utilized not only to discover antiviral agents against CDV but also to dissect the mechanism of morbilliviral-mediated cell-binding and cell-to-cell fusion activity.


Assuntos
Antivirais/farmacologia , Vírus da Cinomose Canina/efeitos dos fármacos , Vírus da Cinomose Canina/fisiologia , Cinomose/virologia , Avaliação Pré-Clínica de Medicamentos , Internalização do Vírus , Animais , Antivirais/química , Sítios de Ligação , Células Cultivadas , Chlorocebus aethiops , Cinomose/tratamento farmacológico , Cinomose/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Interações Hospedeiro-Patógeno , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Receptores Virais/metabolismo , Bibliotecas de Moléculas Pequenas , Células Vero , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo
6.
Expert Opin Drug Discov ; 16(1): 75-88, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32921161

RESUMO

INTRODUCTION: Matrix metalloproteinases have been in the scope of pharmaceutical drug discovery for decades as promising targets for drug development. Until present, no modulator of the enzyme class survived clinical trials, all failing for various reasons. Nevertheless, the target family did not lose its attractiveness and there is ever more evidence that MMP modulators are likely to overcome the hurdles and result in successful clinical therapies. AREAS COVERED: This review provides an overview of past efforts that were taken in the development of MMP inhibitors and insight into promising strategies that might enable drug discovery in the field in the future. Small molecule inhibitors as well as biomolecules are reviewed. EXPERT OPINION: Despite the lack of successful clinical trials in the past, there is ongoing research in the field of MMP modulation, proving the target class has not lost its appeal to pharmaceutical research. With ever-growing insights from different scientific fields that shed light on previously unknown correlations, it is now time to use synergies deriving from biological knowledge, chemical structure generation, and clinical application to reach the ultimate goal of bringing MMP derived drugs on a broad front for the benefit of patients into therapeutic use.


Assuntos
Desenvolvimento de Medicamentos/métodos , Descoberta de Drogas/tendências , Inibidores de Metaloproteinases de Matriz/farmacologia , Animais , Desenho de Fármacos , Humanos , Metaloproteinases da Matriz/efeitos dos fármacos , Metaloproteinases da Matriz/metabolismo , Terapia de Alvo Molecular
7.
Chimia (Aarau) ; 74(5): 382-390, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32482215

RESUMO

Actinomycetes strains isolated from different habitats in Switzerland were investigated for production of antibacterial and antitumoral compounds. Based on partial 16S rRNA gene sequences, the isolated strains were identified to genus level. Streptomyces as the largest genus of Actinobacteriawas isolated the most frequently. A screening assay using the OmniLog instrument was established to facilitate the detection of active compounds from actinomycetes. Extracts prepared from the cultivated strains able to inhibit Staphylococcus aureusand Escherichia coliwere further analysed by HPLC and MALDI-TOF MS to identify the produced antibiotics. In this study, the bioactive compound echinomycin was identified from two isolated Streptomycesstrains. Natural compounds similar to TPU-0037-C, azalomycin F4a 2-ethylpentyl ester, a derivative of bafilomycin A1, milbemycin-α8 and dihydropicromycin were detected from different isolated Streptomyces strains. Milbemycin-α8 showed cytotoxic activity against HT-29 colon cancer cells. The rare actinomycete,Micromonospora sp. Stup16_C148 produced a compound that matches with the antibiotic bottromycin A2. The draft genome sequence from Actinokineospora strain B136.1 was determined using Illumina and nanopore-based technologies. The isolated strain was not able to produce antibacterial compounds under standard cultivation conditions. The antiSMASH bioinformatics analyses of the genome from strain B136.1 identified biosynthetic gene clusters with identity values between 4% to 90% to known gene clusters encoding antibiotics. The combinations of cultivation conditions, screening assays, analytical methods and genome mining are important tools to characterize strains of actinomycetes for the identification of their potential to produce natural compounds with antimicrobial activity.


Assuntos
Actinobacteria , RNA Ribossômico 16S , Streptomyces , Suíça
8.
ChemMedChem ; 15(8): 675-679, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32083799

RESUMO

Sentrin-specific proteases (SENPs) are responsible for the maturation of small ubiquitin-like modifiers (SUMOs) and the deconjugation of SUMOs from their substrate proteins. Studies on prostate cancer revealed an overexpression of SENP1, which promotes prostate cancer progression as well as metastasis. Therefore, SENP1 has been identified as a novel drug target against prostate cancer. Herein, we report the discovery and biological evaluation of potent and selective SENP1 inhibitors. A structure-activity relationship (SAR) of the newly identified pyridone scaffold revealed allosteric inhibitors with very attractive in vitro ADMET properties regarding plasma binding and plasma stability for this challenging target. This study also emphasizes the importance of biochemical mode of inhibition studies for de novo designed inhibitors.


Assuntos
Cisteína Endopeptidases/metabolismo , Descoberta de Drogas , Inibidores de Proteases/farmacologia , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Inibidores de Proteases/síntese química , Inibidores de Proteases/química
9.
Molecules ; 24(12)2019 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-31216704

RESUMO

The family of matrix metalloproteinases (MMPs) consists of a set of biological targets that are involved in a multitude of severe pathogenic events such as different forms of cancers or arthritis. Modulation of the target class with small molecule drugs has not led to the anticipated success until present, as all clinical trials failed due to unacceptable side effects or a lack of therapeutic outcome. Monoclonal antibodies offer a tremendous therapeutic potential given their high target selectivity and good pharmacokinetic profiles. For the treatment of a variety of diseases there are already antibody therapies available and the number is increasing. Recently, several antibodies were developed for the selective inhibition of single MMPs that showed high potency and were therefore investigated in in vivo studies with promising results. In this review, we highlight the progress that has been achieved toward the design of inhibitory antibodies that successfully modulate MMP-9 and MMP-14.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Monoclonais/farmacologia , Desenho de Fármacos , Inibidores de Metaloproteinases de Matriz/química , Inibidores de Metaloproteinases de Matriz/farmacologia , Metaloproteinases da Matriz/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Humanos , Metaloproteinases da Matriz/classificação , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Relação Estrutura-Atividade
10.
Angew Chem Int Ed Engl ; 58(12): 4051-4055, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30615822

RESUMO

De novo drug discovery is still a challenge in the search for potent and selective modulators of therapeutically relevant target proteins. Here, we disclose the unexpected discovery of a peptidic ligand 1 by X-ray crystallography, which was auto-tailored by the therapeutic target MMP-13 through partial self-degradation and subsequent structure-based optimization to a highly potent and selective ß-sheet peptidomimetic inhibitor derived from the endogenous tissue inhibitors of metalloproteinases (TIMPs). The incorporation of non-proteinogenic amino acids in combination with a cyclization strategy proved to be key for the de novo design of TIMP peptidomimetics. The optimized cyclic peptide 4 (ZHAWOC7726) is membrane permeable with an IC50 of 21 nm for MMP-13 and an attractive selectivity profile with respect to a polypharmacology approach including the anticancer targets MMP-2 (IC50 : 170 nm) and MMP-9 (IC50 : 140 nm).


Assuntos
Desenho de Fármacos , Inibidores de Proteases/química , Sítios de Ligação , Cristalografia por Raios X , Ciclização , Metaloproteinase 13 da Matriz/química , Metaloproteinase 13 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/síntese química , Inibidores de Metaloproteinases de Matriz/química , Inibidores de Metaloproteinases de Matriz/metabolismo , Simulação de Dinâmica Molecular , Peptídeos Cíclicos/química , Peptídeos Cíclicos/metabolismo , Peptidomiméticos , Inibidores de Proteases/síntese química , Inibidores de Proteases/metabolismo , Inibidores Teciduais de Metaloproteinases/química
11.
Angew Chem Int Ed Engl ; 58(11): 3300-3345, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-29846032

RESUMO

The natural phenomenon of drug resistance is a widespread issue that hampers the performance of drugs in many major clinical indications. Antibacterial and antifungal drugs are affected, as well as compounds for the treatment of cancer, viral infections, or parasitic diseases. Despite the very diverse set of biological targets and organisms involved in the development of drug resistance, the underlying molecular mechanisms have been identified to understand the emergence of resistance and to overcome this detrimental process. Detailed structural information on the root causes for drug resistance is nowadays frequently available, so next-generation drugs can be designed that are anticipated to suffer less from resistance. This knowledge-based approach is essential for fighting the inevitable occurrence of drug resistance.


Assuntos
Fármacos Anti-HIV/química , Anti-Infecciosos/química , Antimaláricos/química , Antineoplásicos/química , Resistência a Medicamentos/efeitos dos fármacos , Animais , Fármacos Anti-HIV/farmacologia , Anti-Infecciosos/farmacologia , Antimaláricos/farmacologia , Antineoplásicos/farmacologia , Desenho de Fármacos , Humanos , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Transdução de Sinais , Relação Estrutura-Atividade
12.
Virus Res ; 259: 28-37, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30296457

RESUMO

Morbilliviruses (e.g. measles virus [MeV] or canine distemper virus [CDV]) employ the attachment (H) and fusion (F) envelope glycoproteins for cell entry. H protein engagement to a cognate receptor eventually leads to F-triggering. Upon activation, F proteins transit from a prefusion to a postfusion conformation; a refolding process that is associated with membrane merging. Small-molecule morbilliviral fusion inhibitors such as the compound 3G (a chemical analog in the AS-48 class) were previously generated and mechanistic studies revealed a stabilizing effect on morbilliviral prefusion F trimers. Here, we aimed at designing 3G-resistant CDV F mutants by introducing single cysteine residues at hydrophobic core positions of the helical stalk region. Covalently-linked F dimers were generated, which highlighted substantial conformational flexibility within the stalk to achieve those irregular F conformations. Our findings demonstrate that "top-stalk" CDV F cysteine mutants (F-V571C and F-L575C) remained functional and gained resistance to 3G. Conversely, although not all "bottom-stalk" F cysteine variants preserved proper bioactivity, those that remained functional exhibited 3G-sensitivity. According to the recently determined prefusion MeV F trimer/AS-48 co-crystal structure, CDV residues F-V571 and F-L575 may directly interact with 3G. A combination of conformation-specific anti-F antibodies and low-resolution electron microscopy structural analyses confirmed that 3G lost its stabilizing effect on "top-stalk" F cysteine mutants thus suggesting a primary resistance mechanism. Overall, our data suggest that the fusion inhibitor 3G stabilizes prefusion CDV F trimers by docking at the top of the stalk domain.


Assuntos
Antivirais/farmacologia , Vírus da Cinomose Canina/efeitos dos fármacos , Vírus da Cinomose Canina/fisiologia , Farmacorresistência Viral , Proteínas Virais de Fusão/antagonistas & inibidores , Sequência de Aminoácidos , Animais , Linhagem Celular , Chlorocebus aethiops , Cinomose , Modelos Moleculares , Mutação , Conformação Proteica , Células Vero , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo
13.
J Invest Dermatol ; 138(5): 1010-1016, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29391251

RESUMO

Epidermolysis bullosa, a group of heritable blistering disorders, shows extensive phenotypic variability due to mutations in as many as 20 distinct genes. There is no cure for this devastating group of disorders; however, a number of preclinical developments show promise, and some approaches have already reached the stage of early clinical trials. Dystrophic Epidermolysis Bullosa Research Association (DEBRA) International, a global coalition of national patient organizations advocating on behalf of the patients and families with epidermolysis bullosa, supports research and organizes periodic scientific and clinical meetings on this disease. The most recent meeting, EB2017, was held in Salzburg in September 2017. This report summarizes some of the recent research and clinical developments that have identified promising avenues toward treatment and perhaps eventual cure, with improved quality of life for patients with epidermolysis bullosa.


Assuntos
Epidermólise Bolhosa/terapia , Transplante de Medula Óssea , Terapia Baseada em Transplante de Células e Tecidos , Ensaios Clínicos como Assunto , Epidermólise Bolhosa/genética , Estudos de Associação Genética , Terapia Genética , Humanos , Células-Tronco Pluripotentes Induzidas , Mutação
14.
J Med Chem ; 60(23): 9585-9598, 2017 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-28953404

RESUMO

Matrix metalloproteinases (MMPs) play a key role in many diseases like cancer, atherosclerosis or arthritis. Interest in MMP inhibition has been revitalized very recently as the knowledge on the underlying network of biological pathways is steadily growing. On the basis of this new insight into the relevance of MMP-10 and MMP-13 within the MMP network and the ban of hydroxamate inhibitors from clinical development, the discovery of non-hydroxamate multitarget drugs against specific MMPs is of foremost interest. Here, we disclose the discovery of a very potent and selective non-hydroxamate MMP-10/-13 inhibitor. The high potency (IC50 of 31 nM [MMP-10] and 5 nM [MMP-13]) and selectivity over MMP-1, -2, -3, -7, -8, -9, -12, and -14 enable this compound to decipher disease causing MMP networks and to generate new treatment options through targeted polypharmacology.


Assuntos
Metaloproteinase 10 da Matriz/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/química , Inibidores de Metaloproteinases de Matriz/farmacologia , Desenho de Fármacos , Humanos , Modelos Moleculares , Polifarmacologia , Relação Estrutura-Atividade
15.
Molecules ; 22(9)2017 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32961647

RESUMO

Matrix metalloproteinase 7 (MMP-7) is a member of the MMP superfamily and is able to degrade extracellular matrix proteins such as casein, gelatin, fibronectin and proteoglycan. MMP-7 is a validated target for the development of small molecule drugs against cancer. MMP-13 is within the enzyme class the most efficient contributor to type II collagen degeneration and is a validated target in arthritis and cancer. We have developed the dual MMP-7/-13 inhibitor ZHAWOC6941 with IC50-values of 2.2 µM (MMP-7) and 1.2 µM (MMP-13) that is selective over a broad range of MMP isoforms. It spares MMP-1, -2, -3, -8, -9, -12 and -14, making it a valuable modulator for targeted polypharmacology approaches.

16.
Int J Mol Sci ; 17(3): 314, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26938528

RESUMO

Matrix metalloproteinases (MMPs) are a class of zinc dependent endopeptidases which play a crucial role in a multitude of severe diseases such as cancer and osteoarthritis. We employed MMP-13 as the target enzyme for the structure-based design and synthesis of inhibitors able to recognize the catalytic zinc ion in addition to an allosteric binding site in order to increase the affinity of the ligand. Guided by molecular modeling, we optimized an initial allosteric inhibitor by addition of linker fragments and weak zinc binders for recognition of the catalytic center. Furthermore we improved the lipophilic ligand efficiency (LLE) of the initial inhibitor by adding appropriate zinc binding fragments to lower the clogP values of the inhibitors, while maintaining their potency. All synthesized inhibitors showed elevated affinity compared to the initial hit, also most of the novel inhibitors displayed better LLE. Derivatives with carboxylic acids as the zinc binding fragments turned out to be the most potent inhibitors (compound 3 (ZHAWOC5077): IC50 = 134 nM) whereas acyl sulfonamides showed the best lipophilic ligand efficiencies (compound 18 (ZHAWOC5135): LLE = 2.91).


Assuntos
Desenho de Fármacos , Metaloproteinase 13 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/química , Inibidores de Metaloproteinases de Matriz/farmacologia , Zinco/metabolismo , Sítio Alostérico/efeitos dos fármacos , Ácidos Carboxílicos/química , Ácidos Carboxílicos/farmacologia , Humanos , Ligantes , Metaloproteinase 13 da Matriz/química , Simulação de Acoplamento Molecular , Sulfonamidas/química , Sulfonamidas/farmacologia , Zinco/química
17.
Chimia (Aarau) ; 64(3): 200-2, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21140921

RESUMO

The Fmoc protection group is among the most commonly used protection groups for the amino function. A fast method for the thermal deavage of this protection group under base-free conditions without the need for dibenzofulvene scavengers is presented. The advantages of this method include straightforward testability by means of a simple high-temperature NMR experiment, usually high yields, and good selectivity towards the BOC protection group and t-butyl ethers.


Assuntos
Aminoácidos/química , Fluorenos/química , Peptídeos/síntese química , Espectroscopia de Ressonância Magnética
18.
Chem Biol ; 9(7): 821-7, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12144926

RESUMO

Here we characterize the biological activity of a hairpin polyamide 1 that inhibits binding of the minor-groove transcription factor LEF-1, constitutively expressed in colon cancers. Genome-wide analysis of mRNA expression in DLD1 colon cancer cells treated with 1 reveals that a limited number of genes are affected; the most significant changes correspond to genes related to cell cycle, signaling, and proteolysis rather than the anticipated WNT signaling pathway. Treated cells display increased doubling time and hypersensitivity to DNA damage that most likely results from downregulation of DNA-damage checkpoint genes, including YWAE (14-3-3epsilon protein) and DDIT3. Promoter analyses on a genomic level revealed numerous potential polyamide binding sites and multiple possible mechanisms for transcriptional antagonism, underscoring the utility of gene expression profiling in understanding the effects of polyamides on transcription at the cellular level.


Assuntos
DNA/metabolismo , Nylons/metabolismo , RNA Mensageiro/biossíntese , Sítios de Ligação , Calreticulina/genética , Neoplasias do Colo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Bases de Dados Genéticas , Regulação para Baixo/genética , Regulação para Baixo/fisiologia , Ensaio de Desvio de Mobilidade Eletroforética , Genes bcl-1/genética , Humanos , Fator 1 de Ligação ao Facilitador Linfoide , Microscopia de Fluorescência , Conformação de Ácido Nucleico , Nylons/química , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas , Fatores de Transcrição/análise , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica/fisiologia , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA