Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Appl Physiol (1985) ; 122(4): 795-808, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28082335

RESUMO

Hypoxia increases cerebral blood flow (CBF) with the underlying signaling processes potentially including adenosine. A randomized, double-blinded, and placebo-controlled design, was implemented to determine if adenosine receptor antagonism (theophylline, 3.75 mg/Kg) would reduce the CBF response to normobaric and hypobaric hypoxia. In 12 participants the partial pressures of end-tidal oxygen ([Formula: see text]) and carbon dioxide ([Formula: see text]), ventilation (pneumotachography), blood pressure (finger photoplethysmography), heart rate (electrocardiogram), CBF (duplex ultrasound), and intracranial blood velocities (transcranial Doppler ultrasound) were measured during 5-min stages of isocapnic hypoxia at sea level (98, 90, 80, and 70% [Formula: see text]). Ventilation, [Formula: see text] and [Formula: see text], blood pressure, heart rate, and CBF were also measured upon exposure (128 ± 31 min following arrival) to high altitude (3,800 m) and 6 h following theophylline administration. At sea level, although the CBF response to hypoxia was unaltered pre- and postplacebo, it was reduced following theophylline (P < 0.01), a finding explained by a lower [Formula: see text] (P < 0.01). Upon mathematical correction for [Formula: see text], the CBF response to hypoxia was unaltered following theophylline. Cerebrovascular reactivity to hypoxia (i.e., response slope) was not different between trials, irrespective of [Formula: see text] At high altitude, theophylline (n = 6) had no effect on CBF compared with placebo (n = 6) when end-tidal gases were comparable (P > 0.05). We conclude that adenosine receptor-dependent signaling is not obligatory for cerebral hypoxic vasodilation in humans.NEW & NOTEWORTHY The signaling pathways that regulate human cerebral blood flow in hypoxia remain poorly understood. Using a randomized, double-blinded, and placebo-controlled study design, we determined that adenosine receptor-dependent signaling is not obligatory for the regulation of human cerebral blood flow at sea level; these findings also extend to high altitude.


Assuntos
Encéfalo/metabolismo , Encéfalo/fisiopatologia , Hipóxia Encefálica/metabolismo , Hipóxia Encefálica/fisiopatologia , Receptores Purinérgicos P1/metabolismo , Transdução de Sinais/fisiologia , Vasodilatação/fisiologia , Aclimatação/efeitos dos fármacos , Aclimatação/fisiologia , Adulto , Altitude , Velocidade do Fluxo Sanguíneo/efeitos dos fármacos , Velocidade do Fluxo Sanguíneo/fisiologia , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Encéfalo/efeitos dos fármacos , Dióxido de Carbono/metabolismo , Circulação Cerebrovascular/efeitos dos fármacos , Circulação Cerebrovascular/fisiologia , Feminino , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Humanos , Hipóxia Encefálica/tratamento farmacológico , Masculino , Oxigênio/metabolismo , Antagonistas de Receptores Purinérgicos P1/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Teofilina/administração & dosagem , Vasodilatação/efeitos dos fármacos
2.
Am J Physiol Regul Integr Comp Physiol ; 310(5): R398-413, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26676248

RESUMO

This review highlights the influence of oxygen (O2) availability on cerebral blood flow (CBF). Evidence for reductions in O2 content (CaO2 ) rather than arterial O2 tension (PaO2 ) as the chief regulator of cerebral vasodilation, with deoxyhemoglobin as the primary O2 sensor and upstream response effector, is discussed. We review in vitro and in vivo data to summarize the molecular mechanisms underpinning CBF responses during changes in CaO2 . We surmise that 1) during hypoxemic hypoxia in healthy humans (e.g., conditions of acute and chronic exposure to normobaric and hypobaric hypoxia), elevations in CBF compensate for reductions in CaO2 and thus maintain cerebral O2 delivery; 2) evidence from studies implementing iso- and hypervolumic hemodilution, anemia, and polycythemia indicate that CaO2 has an independent influence on CBF; however, the increase in CBF does not fully compensate for the lower CaO2 during hemodilution, and delivery is reduced; and 3) the mechanisms underpinning CBF regulation during changes in O2 content are multifactorial, involving deoxyhemoglobin-mediated release of nitric oxide metabolites and ATP, deoxyhemoglobin nitrite reductase activity, and the downstream interplay of several vasoactive factors including adenosine and epoxyeicosatrienoic acids. The emerging picture supports the role of deoxyhemoglobin (associated with changes in CaO2 ) as the primary biological regulator of CBF. The mechanisms for vasodilation therefore appear more robust during hypoxemic hypoxia than during changes in CaO2 via hemodilution. Clinical implications (e.g., disorders associated with anemia and polycythemia) and future study directions are considered.


Assuntos
Artérias Cerebrais/metabolismo , Circulação Cerebrovascular , Hipóxia/sangue , Oxigênio/sangue , Vasodilatação , Aclimatação , Trifosfato de Adenosina/metabolismo , Altitude , Doença da Altitude/sangue , Doença da Altitude/fisiopatologia , Animais , Artérias Cerebrais/fisiopatologia , Hemodiluição , Hemoglobinas/metabolismo , Homeostase , Humanos , Hipóxia/fisiopatologia , Óxido Nítrico/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA