Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Cardiol ; 401: 131699, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38182061

RESUMO

BACKGROUND: Cardiogenic shock (CS) is the leading cause of death in patients with myocardial infarction with a mortality rate greater than 50%. Recently, the CS 4 Proteins (CS4P) and CLIP scores have been developed to predict survival in CS patients. However, their impact in acute CS and additional short-term left ventricular (LV) circulatory support as prognostic markers is currently not known. METHODS AND RESULTS: CS was induced in a porcine model by injecting microsphere particles into the left main coronary artery. Mechanical circulatory support was performed by additional percutaneous LV unloading using an Impella microaxial flow-pump for 30 minutes. Serum samples were collected at baseline, following the onset of CS, and additional LV unloading. Serum levels of biomarkers of the CS4P (beta-2-microglobulin, ALDOB, L-FABP, SerpinG1) and the CLIP scores (Cystatin C, Lactate, Interleukin-6, NT-proBNP) were neither different at any time point investigated nor did they correlate with cardiac output. CONCLUSION: The CS4P and CLIP scores do not reflect immediate whole-body dysregulation in acute CS and have not been able to predict the potential reversal following additional short-term mechanical support by LV unloading in our experimental model. The impact of both scores as prognostic markers after the immediate onset of CS and following additional short-term LV unloading to identify patients at greatest risk remains to be determined.


Assuntos
Coração Auxiliar , Infarto do Miocárdio , Humanos , Animais , Suínos , Choque Cardiogênico/diagnóstico , Choque Cardiogênico/terapia , Choque Cardiogênico/etiologia , Débito Cardíaco , Biomarcadores , Coração Auxiliar/efeitos adversos , Resultado do Tratamento
2.
Elife ; 102021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34289931

RESUMO

Immature neutrophils and HLA-DRneg/low monocytes expand in cancer, autoimmune diseases and viral infections, but their appearance and immunoregulatory effects on T-cells after acute myocardial infarction (AMI) remain underexplored. We found an expansion of circulating immature CD16+CD66b+CD10neg neutrophils and CD14+HLA-DRneg/low monocytes in AMI patients, correlating with cardiac damage, function and levels of immune-inflammation markers. Immature CD10neg neutrophils expressed high amounts of MMP-9 and S100A9, and displayed resistance to apoptosis. Moreover, we found that increased frequency of CD10neg neutrophils and elevated circulating IFN-γ levels were linked, mainly in patients with expanded CD4+CD28null T-cells. Notably, the expansion of circulating CD4+CD28null T-cells was associated with cytomegalovirus (CMV) seropositivity. Using bioinformatic tools, we identified a tight relationship among the peripheral expansion of immature CD10neg neutrophils, CMV IgG titers, and circulating levels of IFN-γ and IL-12 in patients with AMI. At a mechanistic level, CD10neg neutrophils enhanced IFN-γ production by CD4+ T-cells through a contact-independent mechanism involving IL-12. In vitro experiments also highlighted that HLA-DRneg/low monocytes do not suppress T-cell proliferation but secrete high levels of pro-inflammatory cytokines after differentiation to macrophages and IFN-γ stimulation. Lastly, using a mouse model of AMI, we showed that immature neutrophils (CD11bposLy6GposCD101neg cells) are recruited to the injured myocardium and migrate to mediastinal lymph nodes shortly after reperfusion. In conclusion, immunoregulatory functions of CD10neg neutrophils play a dynamic role in mechanisms linking myeloid cell compartment dysregulation, Th1-type immune responses and inflammation after AMI.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Antígenos HLA-DR/imunologia , Monócitos/imunologia , Infarto do Miocárdio/imunologia , Neprilisina/imunologia , Neutrófilos/imunologia , Idoso , Animais , Biomarcadores , Diferenciação Celular , Proliferação de Células , Citocinas , Feminino , Humanos , Inflamação , Ativação Linfocitária , Masculino , Camundongos , Pessoa de Meia-Idade , Infarto do Miocárdio/patologia , Linfócitos T/imunologia
3.
JCI Insight ; 5(6)2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32213702

RESUMO

Pressure overload (PO) cardiac hypertrophy and heart failure are associated with generalized insulin resistance and hyperinsulinemia, which may exacerbate left ventricular (LV) remodeling. While PO activates insulin receptor tyrosine kinase activity that is transduced by insulin receptor substrate 1 (IRS1), the present study tested the hypothesis that IRS1 and IRS2 have divergent effects on PO-induced LV remodeling. We therefore subjected mice with cardiomyocyte-restricted deficiency of IRS1 (CIRS1KO) or IRS2 (CIRS2KO) to PO induced by transverse aortic constriction (TAC). In WT mice, TAC-induced LV hypertrophy was associated with hyperactivation of IRS1 and Akt1, but not IRS2 and Akt2. CIRS1KO hearts were resistant to cardiac hypertrophy and heart failure in concert with attenuated Akt1 activation. In contrast, CIRS2KO hearts following TAC developed more severe LV dysfunction than WT controls, and this was prevented by haploinsufficiency of Akt1. Failing human hearts exhibited isoform-specific IRS1 and Akt1 activation, while IRS2 and Akt2 activation were unchanged. Kinomic profiling identified IRS1 as a potential regulator of cardioprotective protein kinase G-mediated signaling. In addition, gene expression profiling revealed that IRS1 signaling may promote a proinflammatory response following PO. Together, these data identify IRS1 and Akt1 as critical signaling nodes that mediate LV remodeling in both mice and humans.


Assuntos
Proteínas Substratos do Receptor de Insulina/metabolismo , Insulina/metabolismo , Remodelação Ventricular/fisiologia , Animais , Cardiomegalia/complicações , Humanos , Hiperinsulinismo/complicações , Resistência à Insulina/fisiologia , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-akt/metabolismo
4.
J Mol Med (Berl) ; 97(10): 1427-1438, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31338525

RESUMO

Alveolar and myocardial hypoxia may be causes or sequelae of pulmonary hypertension (PH) and heart failure. We hypothesized that hypoxia initiates specific epigenetic and transcriptional, pro-inflammatory programs in the right ventricle (RV) and left ventricle (LV). We performed an expression screen of 750 miRNAs by qPCR arrays in the murine RV and LV in normoxia (Nx) and hypoxia (Hx; 10% O2 for 18 h, 48 h, and 5d). Additional validation included single qPCR analysis of miRNA and pro-inflammatory transcripts in murine and human RV/LV, and neonatal rat cardiomyocytes (NRCMs). Differential qPCR-analysis (Hx vs. Nx in RV, Hx vs. Nx in LV, and RV vs. LV in Hx) identified nine hypoxia-regulated miRNAs: let-7e-5p, miR-29c-3p, miR-127-3p, miR-130a-3p, miR-146b-5p, miR-197-3p, miR-214-3p, miR-223-3p, and miR-451. Hypoxia downregulated miR-146b in the RV (p < 0.01) and, less so, in the LV (trend; p = 0.28). In silico alignment showed significant binding affinity of miR-146b-5p sequence with the 3'UTR of TRAF6 known to be upstream of pro-inflammatory NF-kB. Consistently, hypoxia induced TRAF6, IL-6, CCL2(MCP-1) in the mouse RV and LV. Incubating neonatal rat cardiomyocytes with pre-miR-146b led to a downregulation of TRAF6, IL-6, and CCL2(MCP-1). TRAF6 mRNA expression was also increased by 3-fold in the RV and LV of end-stage idiopathic pulmonary arterial hypertension (PAH) patients vs. non-PAH controls. We identified hypoxia-regulated, ventricle-specific miRNA expression profiles in the adult mouse heart in vivo. Hypoxia suppresses miR-146b, thus de-repressing TRAF6, and inducing pro-inflammatory IL-6 and CCL2(MCP-1). This novel hypoxia-induced miR-146b-TRAF6-IL-6/CCL2(MCP-1) axis likely drives cardiac fibrosis and dysfunction, and may lead to heart failure. KEY MESSAGES: Chouvarine P, Legchenko E, Geldner J, Riehle C, Hansmann G. Hypoxia drives cardiac miRNAs and inflammation in the right and left ventricle. • Hypoxia drives ventricle-specific miRNA profiles, regulating cardiac inflammation. • miR-146b-5p downregulates TRAF6, known to act upstream of pro-inflammatory NF-κB. • Hypoxia downregulates miR-146b and induces TRAF6, IL-6, CCL2 (MCP-1) in the murine RV and LV. • The inhibitory regulatory effects of miR-146b are confirmed in primary rat cardiomyocytes (pre-miR, anti-miR) and human explant heart tissue (endstage pulmonary arterial hypertension). • A novel miR-146b-TRAF6-IL-6/CCL2(MCP-1) axis likely drives cardiac inflammation, fibrosis and ventricular dysfunction.


Assuntos
Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Inflamação/genética , MicroRNAs/genética , Miocárdio/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Ventrículos do Coração/metabolismo , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Hipóxia , Inflamação/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Camundongos , Miocárdio/patologia , Ratos , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo
5.
Cardiol Young ; 29(5): 602-609, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31036097

RESUMO

BACKGROUND: Late Fontan survivors are at high risk to experience heart failure and death. Therefore, the current study sought to investigate the role of non-invasive diagnostics as prognostic markers for failure of the systemic ventricle following Fontan procedure. METHODS: This monocentric, longitudinal observational study included 60 patients with a median age of 24.5 (19-29) years, who were subjected to cardiac magnetic resonance imaging, echocardiography, cardiopulmonary exercise testing, and blood analysis. The primary endpoint of this study was decompensated heart failure with symptoms at rest, peripheral and/or pulmonary edema, and/or death. RESULTS: During a follow-up of 24 months, 5 patients died and 5 patients suffered from decompensated heart failure. Clinical (NYHA class, initial surgery), functional (VO2 peak, ejection fraction, cardiac index), circulating biomarkers (N-terminal pro brain natriuretic peptide), and imaging parameters (end diastolic volume index, end systolic volume index, mass-index, contractility, afterload) were significantly related to the primary endpoint. Multi-variate regression analysis identified afterload as assessed by cardiac magnetic resonance imaging as an independent predictor of the primary endpoint (hazard ratio 1.98, 95% confidence interval 1.19-3.29, p = 0.009). CONCLUSION: We identified distinct parameters of cardiopulmonary exercise testing, cardiac magnetic resonance imaging, and blood testing as markers for future decompensated heart failure and death in patients with Fontan circulation. Importantly, our data also identify increased afterload as an independent predictor for increased morbidity and mortality. This parameter is easy to assess by non-invasive cardiac magnetic resonance imaging. Its modulation may represent a potential therapeutic approach target in these high-risk patients.


Assuntos
Técnica de Fontan , Cardiopatias Congênitas/cirurgia , Insuficiência Cardíaca/mortalidade , Adulto , Biomarcadores/sangue , Teste de Esforço , Feminino , Alemanha , Cardiopatias Congênitas/fisiopatologia , Insuficiência Cardíaca/diagnóstico por imagem , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Análise Multivariada , Prognóstico , Análise de Regressão , Volume Sistólico , Adulto Jovem
6.
J Mol Cell Cardiol ; 89(Pt B): 297-305, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26476238

RESUMO

Phosphoinositide-dependent protein kinase-1 (PDPK1) is an important mediator of phosphatidylinositol 3-kinase (PI3K) signaling. We previously reported that PI3K but not Akt signaling mediates the increase in mitochondrial oxidative capacity following physiological cardiac hypertrophy. To determine if PDPK1 regulates these metabolic adaptations we examined mice with cardiomyocyte-specific heterozygous knockout of PDPK1 (cPDPK1(+/-)) after 5 wk. exercise swim training. Akt phosphorylation at Thr308 increased by 43% in wildtype (WT) mice but not in cPDPK1(+/-) mice following exercise training. Ventricular contractile function was not different between WT and cPDPK1(+/-) mice at baseline. In addition, exercise did not influence ventricular function in WT or cPDPK1(+/-) mice. Heart weight normalized to tibia length ratios increased by 13.8% in WT mice (6.2±0.2 vs. 7.1±0.2, P=0.001), but not in cPDPK1(+/-) (6.2±0.3 vs. 6.5±0.2, P=0.20) mice after swim training. Diastolic LV dimension increased in WT mice (3.7±0.1 vs. 4.0±0.1 mm, P=0.01) but not in cPDPK1(+/-) (3.8±0.1 vs. 3.7±0.1 mm, P=0.56) following swim training. Maximal mitochondrial oxygen consumption (VADP, nmol/min/mg) using palmitoyl carnitine as a substrate was significantly increased in mice of all genotypes following swim training (WT: 13.6±0.6 vs.16.1±0.9, P=0.04; cPDPK1(+/-): 12.4±0.6 vs.15.9±1.2, P=0.04). These findings suggest that PDPK1 is required for exercise-induced cardiac hypertrophy but does not contribute to exercise-induced increases in mitochondrial function.


Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Adaptação Fisiológica , Cardiomegalia/enzimologia , Cardiomegalia/patologia , Mitocôndrias Cardíacas/metabolismo , Condicionamento Físico Animal , Animais , Cateterismo Cardíaco , Cardiomegalia/complicações , Cardiomegalia/fisiopatologia , Deleção de Genes , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Homozigoto , Insulina/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Cardíacas/efeitos dos fármacos , Modelos Biológicos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Tamanho do Órgão/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Fosfotreonina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ultrassonografia , Função Ventricular Esquerda/efeitos dos fármacos
7.
J Lipid Res ; 56(3): 546-561, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25529920

RESUMO

Autophagy is a catabolic process involved in maintaining energy and organelle homeostasis. The relationship between obesity and the regulation of autophagy is cell type specific. Despite adverse consequences of obesity on cardiac structure and function, the contribution of altered cardiac autophagy in response to fatty acid overload is incompletely understood. Here, we report the suppression of autophagosome clearance and the activation of NADPH oxidase (Nox)2 in both high fat-fed murine hearts and palmitate-treated H9C2 cardiomyocytes (CMs). Defective autophagosome clearance is secondary to superoxide-dependent impairment of lysosomal acidification and enzyme activity in palmitate-treated CMs. Inhibition of Nox2 prevented superoxide overproduction, restored lysosome acidification and enzyme activity, and reduced autophagosome accumulation in palmitate-treated CMs. Palmitate-induced Nox2 activation was dependent on the activation of classical protein kinase Cs (PKCs), specifically PKCßII. These findings reveal a novel mechanism linking lipotoxicity with a PKCß-Nox2-mediated impairment in pH-dependent lysosomal enzyme activity that diminishes autophagic turnover in CMs.


Assuntos
Autofagia/efeitos dos fármacos , Gorduras na Dieta/farmacologia , Lisossomos/metabolismo , Glicoproteínas de Membrana/metabolismo , Miócitos Cardíacos/enzimologia , NADPH Oxidases/metabolismo , Ácido Palmítico/farmacologia , Animais , Autofagia/genética , Linhagem Celular , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Lisossomos/genética , Glicoproteínas de Membrana/genética , Camundongos , Miócitos Cardíacos/citologia , NADPH Oxidase 2 , NADPH Oxidases/genética , Proteína Quinase C beta/genética , Proteína Quinase C beta/metabolismo , Ratos , Superóxidos/metabolismo
8.
Mol Cell Biol ; 35(5): 831-46, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25535334

RESUMO

Sustained Akt activation induces cardiac hypertrophy (LVH), which may lead to heart failure. This study tested the hypothesis that Akt activation contributes to mitochondrial dysfunction in pathological LVH. Akt activation induced LVH and progressive repression of mitochondrial fatty acid oxidation (FAO) pathways. Preventing LVH by inhibiting mTOR failed to prevent the decline in mitochondrial function, but glucose utilization was maintained. Akt activation represses expression of mitochondrial regulatory, FAO, and oxidative phosphorylation genes in vivo that correlate with the duration of Akt activation in part by reducing FOXO-mediated transcriptional activation of mitochondrion-targeted nuclear genes in concert with reduced signaling via peroxisome proliferator-activated receptor α (PPARα)/PGC-1α and other transcriptional regulators. In cultured myocytes, Akt activation disrupted mitochondrial bioenergetics, which could be partially reversed by maintaining nuclear FOXO but not by increasing PGC-1α. Thus, although short-term Akt activation may be cardioprotective during ischemia by reducing mitochondrial metabolism and increasing glycolysis, long-term Akt activation in the adult heart contributes to pathological LVH in part by reducing mitochondrial oxidative capacity.


Assuntos
Cardiomegalia/metabolismo , Núcleo Celular/metabolismo , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Ácidos Graxos/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Glicólise , Coração/fisiologia , Hemodinâmica , Hipertrofia , Masculino , Camundongos , Células Musculares/citologia , Oxigênio/metabolismo , PPAR alfa/metabolismo , Proteômica , Transdução de Sinais , Transcrição Gênica , Transgenes
9.
FASEB J ; 28(8): 3691-702, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24776744

RESUMO

During pathological hypertrophy, peroxisome proliferator-activated receptor coactivator 1α (PGC-1α) is repressed in concert with reduced mitochondrial oxidative capacity and fatty acid oxidation (FAO). We therefore sought to determine if maintaining or increasing PGC-1α levels in the context of pressure overload hypertrophy (POH) would preserve mitochondrial function and prevent contractile dysfunction. Pathological cardiac hypertrophy was induced using 4 wk of transverse aortic constriction (TAC) in mice overexpressing the human PGC-1α genomic locus via a bacterial artificial chromosome (TG) and nontransgenic controls (Cont). PGC-1α levels were increased by 40% in TG mice and were sustained following TAC. Although TAC-induced repression of FAO genes and oxidative phosphorylation (oxphos) genes was prevented in TG mice, mitochondrial function and ATP synthesis were equivalently impaired in Cont and TG mice after TAC. Contractile function was also equally impaired in Cont and TG mice following TAC, as demonstrated by decreased +dP/dt and ejection fraction and increased left ventricular developed pressure and end diastolic pressure. Conversely, capillary density was preserved, in concert with increased VEGF expression, while apoptosis and fibrosis were reduced in TG relative to Cont mice after TAC. Hence, sustaining physiological levels of PGC-1α expression following POH, while preserving myocardial vascularity, does not prevent mitochondrial and contractile dysfunction.


Assuntos
Cardiomegalia/fisiopatologia , Neovascularização Fisiológica/fisiologia , Fatores de Transcrição/fisiologia , Trifosfato de Adenosina/biossíntese , Animais , Aorta , Apoptose , Capilares/ultraestrutura , Cardiomegalia/etiologia , Constrição , Fibrose , Humanos , Hipertensão/complicações , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Transgênicos , Mitocôndrias Cardíacas/fisiologia , Contração Miocárdica/fisiologia , Oxirredução , Fosforilação Oxidativa , Palmitatos/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , RNA Mensageiro/biossíntese , Proteínas Recombinantes/metabolismo , Volume Sistólico , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Fator A de Crescimento do Endotélio Vascular/biossíntese , Fator A de Crescimento do Endotélio Vascular/genética , Remodelação Ventricular
10.
Diabetes ; 63(8): 2676-89, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24677713

RESUMO

Insulin and adrenergic stimulation are two divergent regulatory systems that may interact under certain pathophysiological circumstances. Here, we characterized a complex consisting of insulin receptor (IR) and ß2-adrenergic receptor (ß2AR) in the heart. The IR/ß2AR complex undergoes dynamic dissociation under diverse conditions such as Langendorff perfusions of hearts with insulin or after euglycemic-hyperinsulinemic clamps in vivo. Activation of IR with insulin induces protein kinase A (PKA) and G-protein receptor kinase 2 (GRK2) phosphorylation of the ß2AR, which promotes ß2AR coupling to the inhibitory G-protein, Gi. The insulin-induced phosphorylation of ß2AR is dependent on IRS1 and IRS2. After insulin pretreatment, the activated ß2AR-Gi signaling effectively attenuates cAMP/PKA activity after ß-adrenergic stimulation in cardiomyocytes and consequently inhibits PKA phosphorylation of phospholamban and contractile responses in myocytes in vitro and in Langendorff perfused hearts. These data indicate that increased IR signaling, as occurs in hyperinsulinemic states, may directly impair ßAR-regulated cardiac contractility. This ß2AR-dependent IR and ßAR signaling cross-talk offers a molecular basis for the broad interaction between these signaling cascades in the heart and other tissues or organs that may contribute to the pathophysiology of metabolic and cardiovascular dysfunction in insulin-resistant states.


Assuntos
Insulina/farmacologia , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Quinase 2 de Receptor Acoplado a Proteína G/genética , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Insulina/administração & dosagem , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Camundongos , Camundongos Knockout , Contração Miocárdica/fisiologia , Miócitos Cardíacos/citologia , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 2/genética , Transdução de Sinais
11.
Mol Endocrinol ; 27(1): 172-84, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23204326

RESUMO

Impaired insulin-mediated glucose uptake characterizes cardiac muscle in humans and animals with insulin resistance and diabetes, despite preserved or enhanced phosphatidylinositol 3-kinase (PI3K) and the serine-threonine kinase, Akt-signaling, via mechanisms that are incompletely understood. One potential mechanism is PI3K- and Akt-mediated activation of mechanistic target of rapamycin (mTOR) and ribosomal protein S6 kinase (S6K), which may impair insulin-mediated activation of insulin receptor substrate (IRS)1/2 via inhibitory serine phosphorylation or proteasomal degradation. To gain mechanistic insights by which constitutive activation of PI3K or Akt may desensitize insulin-mediated glucose uptake in cardiomyocytes, we examined mice with cardiomyocyte-restricted, constitutive or inducible overexpression of a constitutively activated PI3K or a myristoylated Akt1 (myrAkt1) transgene that also expressed a myc-epitope-tagged glucose transporter type 4 protein (GLUT4). Although short-term activation of PI3K and myrAkt1 increased mTOR and S6 signaling, there was no impairment in insulin-mediated activation of IRS1/2. However, insulin-mediated glucose uptake was reduced by 50-80%. Although longer-term activation of Akt reduced IRS2 protein content via an mTORC1-mediated mechanism, treatment of transgenic mice with rapamycin failed to restore insulin-mediated glucose uptake, despite restoring IRS2. Transgenic activation of Akt and insulin-stimulation of myrAkt1 transgenic cardiomyocytes increased sarcolemmal insertion of myc-GLUT4 to levels equivalent to that observed in insulin-stimulated wild-type controls. Despite preserved GLUT4 translocation, glucose uptake was not elevated by the presence of constitutive activation of PI3K and Akt. Hexokinase II activity was preserved in myrAkt1 hearts. Thus, constitutive activation of PI3K and Akt in cardiomyocytes impairs GLUT4-mediated glucose uptake via mechanisms that impair the function of GLUT4 after its plasma-membrane insertion.


Assuntos
Transportador de Glucose Tipo 4/metabolismo , Glucose/metabolismo , Insulina/fisiologia , Miocárdio/enzimologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Células Cultivadas , Desoxiglucose/metabolismo , Ativação Enzimática , Hexoquinase/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Transgênicos , Complexos Multiproteicos , Miocárdio/citologia , Miócitos Cardíacos/enzimologia , Processamento de Proteína Pós-Traducional , Transporte Proteico , Proteínas/antagonistas & inibidores , Sirolimo/farmacologia , Serina-Treonina Quinases TOR
12.
Diabetes ; 58(9): 1986-97, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19542201

RESUMO

OBJECTIVE: To elucidate the molecular basis for mitochondrial dysfunction, which has been implicated in the pathogenesis of diabetes complications. RESEARCH DESIGN AND METHODS: Mitochondrial matrix and membrane fractions were generated from liver, brain, heart, and kidney of wild-type and type 1 diabetic Akita mice. Comparative proteomics was performed using label-free proteome expression analysis. Mitochondrial state 3 respirations and ATP synthesis were measured, and mitochondrial morphology was evaluated by electron microscopy. Expression of genes that regulate mitochondrial biogenesis, substrate utilization, and oxidative phosphorylation (OXPHOS) were determined. RESULTS: In diabetic mice, fatty acid oxidation (FAO) proteins were less abundant in liver mitochondria, whereas FAO protein content was induced in mitochondria from all other tissues. Kidney mitochondria showed coordinate induction of tricarboxylic acid (TCA) cycle enzymes, whereas TCA cycle proteins were repressed in cardiac mitochondria. Levels of OXPHOS subunits were coordinately increased in liver mitochondria, whereas mitochondria of other tissues were unaffected. Mitochondrial respiration, ATP synthesis, and morphology were unaffected in liver and kidney mitochondria. In contrast, state 3 respirations, ATP synthesis, and mitochondrial cristae density were decreased in cardiac mitochondria and were accompanied by coordinate repression of OXPHOS and peroxisome proliferator-activated receptor (PPAR)-gamma coactivator (PGC)-1alpha transcripts. CONCLUSIONS: Type 1 diabetes causes tissue-specific remodeling of the mitochondrial proteome. Preservation of mitochondrial function in kidney, brain, and liver, versus mitochondrial dysfunction in the heart, supports a central role for mitochondrial dysfunction in diabetic cardiomyopathy.


Assuntos
Complicações do Diabetes/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Mitocôndrias Hepáticas/metabolismo , Doenças Mitocondriais/metabolismo , Proteoma/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Encéfalo/metabolismo , Respiração Celular , Complicações do Diabetes/genética , Diabetes Mellitus Tipo 1/genética , Ácidos Graxos/metabolismo , Perfilação da Expressão Gênica , Rim/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Microscopia Eletrônica , Mitocôndrias Hepáticas/genética , Mitocôndrias Hepáticas/ultraestrutura , Doenças Mitocondriais/genética , Fosforilação Oxidativa
13.
Circ Res ; 104(9): 1085-94, 2009 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-19342603

RESUMO

Impaired insulin signaling via phosphatidylinositol 3-kinase/Akt to endothelial nitric oxide synthase (eNOS) in the vasculature has been postulated to lead to arterial dysfunction and hypertension in obesity and other insulin resistant states. To investigate this, we compared insulin signaling in the vasculature, endothelial function, and systemic blood pressure in mice fed a high-fat (HF) diet to mice with genetic ablation of insulin receptors in all vascular tissues (TTr-IR(-/-)) or mice with genetic ablation of Akt1 (Akt1-/-). HF mice developed obesity, impaired glucose tolerance, and elevated free fatty acids that was associated with endothelial dysfunction and hypertension. Basal and insulin-mediated phosphorylation of extracellular signal-regulated kinase 1/2 and Akt in the vasculature was preserved, but basal and insulin-stimulated eNOS phosphorylation was abolished in vessels from HF versus lean mice. In contrast, basal vascular eNOS phosphorylation, endothelial function, and blood pressure were normal despite absent insulin-mediated eNOS phosphorylation in TTr-IR(-/-) mice and absent insulin-mediated eNOS phosphorylation via Akt1 in Akt1-/- mice. In cultured endothelial cells, 6 hours of incubation with palmitate attenuated basal and insulin-stimulated eNOS phosphorylation and NO production despite normal activation of extracellular signal-regulated kinase 1/2 and Akt. Moreover, incubation of isolated arteries with palmitate impaired endothelium-dependent but not vascular smooth muscle function. Collectively, these results indicate that lower arterial eNOS phosphorylation, hypertension, and vascular dysfunction following HF feeding do not result from defective upstream signaling via Akt, but from free fatty acid-mediated impairment of eNOS phosphorylation.


Assuntos
Pressão Sanguínea , Endotélio Vascular/enzimologia , Hipertensão/enzimologia , Resistência à Insulina , Insulina/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor de Insulina/metabolismo , Transdução de Sinais , Animais , Células Cultivadas , Gorduras na Dieta , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Células Endoteliais/enzimologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiopatologia , Inibidores Enzimáticos/farmacologia , Ácidos Graxos não Esterificados/metabolismo , Intolerância à Glucose/enzimologia , Intolerância à Glucose/fisiopatologia , Hipertensão/etiologia , Hipertensão/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Obesidade/enzimologia , Obesidade/fisiopatologia , Ácido Palmítico/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/deficiência , Proteínas Proto-Oncogênicas c-akt/genética , Receptor de Insulina/deficiência , Receptor de Insulina/genética , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Vasoconstrição , Vasoconstritores/farmacologia , Vasodilatação , Vasodilatadores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA