Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genome Med ; 9(1): 118, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29273094

RESUMO

BACKGROUND: The phenotypic severity of congenital muscular dystrophy-dystroglycanopathy (MDDG) syndromes associated with aberrant glycosylation of α-dystroglycan ranges from the severe Walker-Warburg syndrome or muscle-eye-brain disease to mild, late-onset, isolated limb-girdle muscular dystrophy without neural involvement. However, muscular dystrophy is invariably found across the spectrum of MDDG patients. METHODS: Using linkage mapping and whole-exome sequencing in two families with an unexplained neurodevelopmental disorder, we have identified homozygous and compound heterozygous mutations in B3GALNT2. RESULTS: The first family comprises two brothers of Dutch non-consanguineous parents presenting with mild ID and behavioral problems. Immunohistochemical analysis of muscle biopsy revealed no significant aberrations, in line with the absence of a muscular phenotype in the affected siblings. The second family includes five affected individuals from an Iranian consanguineous kindred with mild-to-moderate intellectual disability (ID) and epilepsy without any notable neuroimaging, muscle, or eye abnormalities. Complementation assays of the compound heterozygous mutations identified in the two brothers had a comparable effect on the O-glycosylation of α-dystroglycan as previously reported mutations that are associated with severe muscular phenotypes. CONCLUSIONS: In conclusion, we show that mutations in B3GALNT2 can give rise to a novel MDDG syndrome presentation, characterized by ID associated variably with seizure, but without any apparent muscular involvement. Importantly, B3GALNT2 activity does not fully correlate with the severity of the phenotype as assessed by the complementation assay.


Assuntos
Deficiência Intelectual/genética , Mutação , N-Acetilgalactosaminiltransferases/genética , Fenótipo , Síndrome de Walker-Warburg/genética , Adolescente , Adulto , Linhagem Celular , Criança , Feminino , Genes Recessivos , Genótipo , Humanos , Deficiência Intelectual/patologia , Masculino , N-Acetilgalactosaminiltransferases/metabolismo , Linhagem , Síndrome de Walker-Warburg/patologia
2.
Neurology ; 84(21): 2177-82, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25934851

RESUMO

OBJECTIVE: To identify the underlying genetic defect in 5 patients from a consanguineous family with a Walker-Warburg phenotype, together with intracranial calcifications. METHODS: Homozygosity mapping and exome sequencing, followed by Sanger sequencing of the obtained candidate gene, was performed. Expression of the candidate gene was tested by reverse transcription PCR. Patient fibroblasts were converted to myotubes, and the expression and function of dystroglycan was tested by Western blotting. RESULTS: We detected a homozygous loss-of-function frameshift mutation in the DAG1 gene and showed that this mutation results in a complete absence of both α- and ß-dystroglycan. CONCLUSIONS: A loss-of-function mutation in DAG1 can result in Walker-Warburg syndrome and is not embryonic lethal.


Assuntos
Distroglicanas/deficiência , Distroglicanas/genética , Síndrome de Walker-Warburg/genética , Árabes/genética , Consanguinidade , Feminino , Mutação da Fase de Leitura , Humanos , Lactente , Recém-Nascido , Israel , Síndrome de Walker-Warburg/patologia
3.
Hum Mol Genet ; 24(8): 2241-6, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25552652

RESUMO

Binding of cellular α-dystroglycan (α-DG) to its extracellular matrix ligands is fully dependent on a unique O-mannose-linked glycan. Disrupted O-mannosylation is the hallmark of the muscular dystrophy-dystroglycanopathy (MDDG) syndromes. SLC35A1, encoding the transporter of cytidine 5'-monophosphate-sialic acid, was recently identified as MDDG candidate gene. This is surprising, since sialic acid itself is dispensable for α-DG-ligand binding. In a novel SLC35A1-deficient cell model, we demonstrated a lack of α-DG O-mannosylation, ligand binding and incorporation of sialic acids. Removal of sialic acids from HAP1 wild-type cells after incorporation or preventing sialylation during synthesis did not affect α-DG O-mannosylation or ligand binding but did affect sialylation. Lentiviral-mediated complementation with the only known disease mutation p.Q101H failed to restore deficient O-mannosylation in SLC35A1 knockout cells and partly restored sialylation. These data indicate a role for SLC35A1 in α-DG O-mannosylation that is distinct from sialic acid metabolism. In addition, human SLC35A1 deficiency can be considered as a combined disorder of α-DG O-mannosylation and sialylation, a novel variant of the MDDG syndromes.


Assuntos
Distroglicanas/metabolismo , Manose/metabolismo , Proteínas de Transporte de Nucleotídeos/genética , Síndrome de Walker-Warburg/genética , Síndrome de Walker-Warburg/metabolismo , Linhagem Celular , Monofosfato de Citidina/metabolismo , Humanos , Mutação , Ácido N-Acetilneuramínico/metabolismo , Proteínas de Transporte de Nucleotídeos/metabolismo
4.
Science ; 340(6131): 479-83, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23519211

RESUMO

Glycosylated α-dystroglycan (α-DG) serves as cellular entry receptor for multiple pathogens, and defects in its glycosylation cause hereditary Walker-Warburg syndrome (WWS). At least eight proteins are critical to glycosylate α-DG, but many genes mutated in WWS remain unknown. To identify modifiers of α-DG, we performed a haploid screen for Lassa virus entry, a hemorrhagic fever virus causing thousands of deaths annually that hijacks glycosylated α-DG to enter cells. In complementary screens, we profiled cells for absence of α-DG carbohydrate chains or biochemically related glycans. This revealed virus host factors and a suite of glycosylation units, including all known Walker-Warburg genes and five additional factors critical for the modification of α-DG. Our findings accentuate the complexity of this posttranslational feature and point out genes defective in dystroglycanopathies.


Assuntos
Distroglicanas/metabolismo , Interações Hospedeiro-Patógeno/genética , Febre Lassa/genética , Vírus Lassa/fisiologia , Proteínas de Membrana/genética , Proteoma/metabolismo , Internalização do Vírus , Síndrome de Walker-Warburg/genética , Sequência de Aminoácidos , Linhagem Celular , Feminino , Glicosilação , Haploidia , Humanos , Lactente , Febre Lassa/virologia , Masculino , Dados de Sequência Molecular , Mutação , Linhagem , Pentosiltransferases
5.
Hum Mol Genet ; 22(9): 1746-54, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23359570

RESUMO

Several known or putative glycosyltransferases are required for the synthesis of laminin-binding glycans on alpha-dystroglycan (αDG), including POMT1, POMT2, POMGnT1, LARGE, Fukutin, FKRP, ISPD and GTDC2. Mutations in these glycosyltransferase genes result in defective αDG glycosylation and reduced ligand binding by αDG causing a clinically heterogeneous group of congenital muscular dystrophies, commonly referred to as dystroglycanopathies. The most severe clinical form, Walker-Warburg syndrome (WWS), is characterized by congenital muscular dystrophy and severe neurological and ophthalmological defects. Here, we report two homozygous missense mutations in the ß-1,3-N-acetylglucosaminyltransferase 1 (B3GNT1) gene in a family affected with WWS. Functional studies confirmed the pathogenicity of the mutations. First, expression of wild-type but not mutant B3GNT1 in human prostate cancer (PC3) cells led to increased levels of αDG glycosylation. Second, morpholino knockdown of the zebrafish b3gnt1 orthologue caused characteristic muscular defects and reduced αDG glycosylation. These functional studies identify an important role of B3GNT1 in the synthesis of the uncharacterized laminin-binding glycan of αDG and implicate B3GNT1 as a novel causative gene for WWS.


Assuntos
Mutação de Sentido Incorreto , N-Acetilglucosaminiltransferases/genética , Síndrome de Walker-Warburg/genética , Animais , Linhagem Celular Tumoral , Mapeamento Cromossômico , Estudos de Coortes , Distroglicanas/metabolismo , Feminino , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Glicosilação , Homozigoto , Humanos , Lactente , Laminina/metabolismo , Masculino , Distrofia Muscular do Cíngulo dos Membros/genética , N-Acetilglucosaminiltransferases/metabolismo , Linhagem , Fenótipo , Ligação Proteica , Síndrome de Walker-Warburg/patologia , Peixe-Zebra/genética
6.
Nat Genet ; 44(5): 581-5, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22522421

RESUMO

Walker-Warburg syndrome (WWS) is an autosomal recessive multisystem disorder characterized by complex eye and brain abnormalities with congenital muscular dystrophy (CMD) and aberrant a-dystroglycan glycosylation. Here we report mutations in the ISPD gene (encoding isoprenoid synthase domain containing) as the second most common cause of WWS. Bacterial IspD is a nucleotidyl transferase belonging to a large glycosyltransferase family, but the role of the orthologous protein in chordates is obscure to date, as this phylum does not have the corresponding non-mevalonate isoprenoid biosynthesis pathway. Knockdown of ispd in zebrafish recapitulates the human WWS phenotype with hydrocephalus, reduced eye size, muscle degeneration and hypoglycosylated a-dystroglycan. These results implicate ISPD in a-dystroglycan glycosylation in maintaining sarcolemma integrity in vertebrates.


Assuntos
Distroglicanas/metabolismo , Mutação/genética , Síndrome de Walker-Warburg/genética , Peixe-Zebra/genética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Pré-Escolar , Embrião não Mamífero , Olho/metabolismo , Olho/patologia , Glicosilação , Humanos , Manosiltransferases/genética , Manosiltransferases/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Peixe-Zebra/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA