Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(1): e2211297120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574664

RESUMO

WD repeat domain 5 (WDR5) is a core scaffolding component of many multiprotein complexes that perform a variety of critical chromatin-centric processes in the nucleus. WDR5 is a component of the mixed lineage leukemia MLL/SET complex and localizes MYC to chromatin at tumor-critical target genes. As a part of these complexes, WDR5 plays a role in sustaining oncogenesis in a variety of human cancers that are often associated with poor prognoses. Thus, WDR5 has been recognized as an attractive therapeutic target for treating both solid and hematological tumors. Previously, small-molecule inhibitors of the WDR5-interaction (WIN) site and WDR5 degraders have demonstrated robust in vitro cellular efficacy in cancer cell lines and established the therapeutic potential of WDR5. However, these agents have not demonstrated significant in vivo efficacy at pharmacologically relevant doses by oral administration in animal disease models. We have discovered WDR5 WIN-site inhibitors that feature bicyclic heteroaryl P7 units through structure-based design and address the limitations of our previous series of small-molecule inhibitors. Importantly, our lead compounds exhibit enhanced on-target potency, excellent oral pharmacokinetic (PK) profiles, and potent dose-dependent in vivo efficacy in a mouse MV4:11 subcutaneous xenograft model by oral dosing. Furthermore, these in vivo probes show excellent tolerability under a repeated high-dose regimen in rodents to demonstrate the safety of the WDR5 WIN-site inhibition mechanism. Collectively, our results provide strong support for WDR5 WIN-site inhibitors to be utilized as potential anticancer therapeutics.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Neoplasias , Repetições WD40 , Animais , Humanos , Camundongos , Cromatina , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Modelos Animais , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral
2.
J Med Chem ; 65(8): 6287-6312, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35436124

RESUMO

WD repeat domain 5 (WDR5) is a nuclear scaffolding protein that forms many biologically important multiprotein complexes. The WIN site of WDR5 represents a promising pharmacological target in a variety of human cancers. Here, we describe the optimization of our initial WDR5 WIN-site inhibitor using a structure-guided pharmacophore-based convergent strategy to improve its druglike properties and pharmacokinetic profile. The core of the previous lead remained constant while a focused SAR effort on the three pharmacophore units was combined to generate a new in vivo lead series. Importantly, this new series of compounds has picomolar binding affinity, improved cellular antiproliferative activity and selectivity, and increased kinetic aqueous solubility. They also exhibit a desirable oral pharmacokinetic profile with manageable intravenous clearance and high oral bioavailability. Thus, these new leads are useful probes toward studying the effects of WDR5 inhibition.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Humanos , Repetições WD40
3.
J Med Chem ; 64(19): 14757-14772, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34597046

RESUMO

T-cell immunoglobulin and mucin domain-containing molecule 3 (TIM-3; HAVCR2) has emerged as an attractive immune checkpoint target for cancer immunotherapy. TIM-3 is a negative regulator of the systemic immune response to cancer and is expressed on several dysfunctional, or exhausted, immune cell subsets. Upregulation of TIM-3 is associated with tumor progression, poor survival rates, and acquired resistance to antibody-based immunotherapies in the clinic. Despite the potential advantages of small-molecule inhibitors over antibodies, the discovery of small-molecule inhibitors has lagged behind that of antibody therapeutics. Here, we describe the discovery of high-affinity small-molecule ligands for TIM-3 through an NMR-based fragment screen and structure-based lead optimization. These compounds represent useful tools to further study the biology of TIM-3 immune modulation in cancer and serve as a potentially useful starting point toward the discovery of TIM-3-targeted therapeutics.


Assuntos
Descoberta de Drogas , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Linfócitos T/metabolismo , Cristalografia por Raios X , Polarização de Fluorescência , Humanos , Ligação Proteica , Domínios Proteicos , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
4.
J Med Chem ; 63(2): 656-675, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31858797

RESUMO

WD repeat domain 5 (WDR5) is a member of the WD40-repeat protein family that plays a critical role in multiple chromatin-centric processes. Overexpression of WDR5 correlates with a poor clinical outcome in many human cancers, and WDR5 itself has emerged as an attractive target for therapy. Most drug-discovery efforts center on the WIN site of WDR5 that is responsible for the recruitment of WDR5 to chromatin. Here, we describe discovery of a novel WDR5 WIN site antagonists containing a dihydroisoquinolinone bicyclic core using a structure-based design. These compounds exhibit picomolar binding affinity and selective concentration-dependent antiproliferative activities in sensitive MLL-fusion cell lines. Furthermore, these WDR5 WIN site binders inhibit proliferation in MYC-driven cancer cells and reduce MYC recruitment to chromatin at MYC/WDR5 co-bound genes. Thus, these molecules are useful probes to study the implication of WDR5 inhibition in cancers and serve as a potential starting point toward the discovery of anti-WDR5 therapeutics.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/síntese química , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Quinolonas/síntese química , Quinolonas/farmacologia , Repetições WD40/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células , Cromatina/efeitos dos fármacos , Cromatina/genética , Cristalografia por Raios X , Desenho de Fármacos , Descoberta de Drogas , Repressão Epigenética/efeitos dos fármacos , Genes myc/efeitos dos fármacos , Humanos , Relação Estrutura-Atividade
5.
Bioorg Med Chem Lett ; 29(6): 786-790, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30728114

RESUMO

The PD-1 immune checkpoint pathway is a highly validated target for cancer immunotherapy. Despite the potential advantages of small molecule inhibitors over antibodies, the discovery of small molecule checkpoint inhibitors has lagged behind. To discover small molecule inhibitors of the PD-1 pathway, we have utilized a fragment-based approach. Small molecules were identified that bind to PD-L1 and crystal structures of these compounds bound to PD-L1 were obtained.


Assuntos
Antígeno B7-H1/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/química , Cristalografia por Raios X , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Ligação Proteica , Bibliotecas de Moléculas Pequenas/química
6.
J Nucl Med ; 58(12): 1991-1996, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28611243

RESUMO

There is a large unmet need for a simple, accurate, noninvasive, quantitative, and high-resolution imaging modality to detect lung fibrosis at early stage and to monitor disease progression. Overexpression of collagen is a hallmark of organ fibrosis. Here, we describe the optimization of a collagen-targeted PET probe for staging pulmonary fibrosis. Methods: Six peptides were synthesized, conjugated to a copper chelator, and radiolabeled with 64Cu. The collagen affinity of each probe was measured in a plate-based assay. The pharmacokinetics and metabolic stability of the probes were studied in healthy rats. The capacity of these probes to detect and stage pulmonary fibrosis in vivo was assessed in a mouse model of bleomycin-induced fibrosis using PET imaging. Results: All probes exhibited affinities in the low micromolar range (1.6 µM < Kd < 14.6 µM) and had rapid blood clearance. The probes showed 2- to 8-fold-greater uptake in the lungs of bleomycin-treated mice than sham-treated mice, whereas the distribution in other organs was similar between bleomycin-treated and sham mice. The probe 64Cu-CBP7 showed the highest uptake in fibrotic lungs and the highest target-to-background ratios. The superiority of 64Cu-CBP7 was traced to a much higher metabolic stability compared with the other probes. The specificity of 64Cu-CBP7 for collagen was confirmed by comparison with a nonbinding isomer. Conclusion:64Cu-CBP7 is a promising candidate for in vivo imaging of pulmonary fibrosis.


Assuntos
Colágeno/metabolismo , Fibrose Pulmonar/diagnóstico por imagem , Compostos Radiofarmacêuticos/síntese química , Animais , Antibióticos Antineoplásicos , Bleomicina , Quelantes , Radioisótopos de Cobre , Progressão da Doença , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tomografia por Emissão de Pósitrons , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Compostos Radiofarmacêuticos/farmacocinética , Ratos , Distribuição Tecidual
7.
Sci Transl Med ; 9(384)2017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28381537

RESUMO

Pulmonary fibrosis is scarring of the lungs that can arise from radiation injury, drug toxicity, environmental or genetic causes, and for unknown reasons [idiopathic pulmonary fibrosis (IPF)]. Overexpression of collagen is a hallmark of organ fibrosis. We describe a peptide-based positron emission tomography (PET) probe (68Ga-CBP8) that targets collagen type I. We evaluated 68Ga-CBP8 in vivo in the bleomycin-induced mouse model of pulmonary fibrosis. 68Ga-CBP8 showed high specificity for pulmonary fibrosis and high target/background ratios in diseased animals. The lung PET signal and lung 68Ga-CBP8 uptake (quantified ex vivo) correlated linearly (r2 = 0.80) with the amount of lung collagen in mice with fibrosis. We further demonstrated that the 68Ga-CBP8 probe could be used to monitor response to treatment in a second mouse model of pulmonary fibrosis associated with vascular leak. Ex vivo analysis of lung tissue from patients with IPF supported the animal findings. These studies indicate that 68Ga-CBP8 is a promising candidate for noninvasive imaging of human pulmonary fibrosis.


Assuntos
Colágeno Tipo I/metabolismo , Sondas Moleculares/química , Tomografia por Emissão de Pósitrons , Fibrose Pulmonar/diagnóstico por imagem , Fibrose Pulmonar/diagnóstico , Animais , Bleomicina , Permeabilidade Capilar , Modelos Animais de Doenças , Progressão da Doença , Radioisótopos de Gálio , Humanos , Fibrose Pulmonar Idiopática/patologia , Rim/metabolismo , Pulmão/patologia , Masculino , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/patologia
8.
Arterioscler Thromb Vasc Biol ; 35(10): 2114-21, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26272938

RESUMO

OBJECTIVE: Thrombosis is a leading cause of morbidity and mortality worldwide. Current diagnostic strategies rely on imaging modalities that are specific for distinct vascular territories, but a thrombus-specific whole-body imaging approach is still missing. Moreover, imaging techniques to assess thrombus composition are underdeveloped, although therapeutic strategies may benefit from such technology. Therefore, our goal was to test whether positron emission tomography (PET) with the fibrin-binding probe (64)Cu-FBP8 allows multisite thrombus detection and fibrin content estimation. APPROACH AND RESULTS: Thrombosis was induced in Sprague-Dawley rats (n=32) by ferric chloride application on both carotid artery and femoral vein. (64)Cu-FBP8-PET/CT imaging was performed 1, 3, or 7 days after thrombosis to detect thrombus location and to evaluate age-dependent changes in target uptake. Ex vivo biodistribution, autoradiography, and histopathology were performed to validate imaging results. Arterial and venous thrombi were localized on fused PET/CT images with high accuracy (97.6%; 95% confidence interval, 92-100). A single whole-body PET/MR imaging session was sufficient to reveal the location of both arterial and venous thrombi after (64)Cu-FBP8 administration. PET imaging showed that probe uptake was greater in younger clots than in older ones for both arterial and venous thrombosis (P<0.0001). Quantitative histopathology revealed an age-dependent reduction of thrombus fibrin content (P<0.001), consistent with PET results. Biodistribution and autoradiography further confirmed the imaging findings. CONCLUSIONS: We demonstrated that (64)Cu-FBP8-PET is a feasible approach for whole-body thrombus detection and that molecular imaging of fibrin can provide, noninvasively, insight into clot composition.


Assuntos
Radioisótopos de Cobre , Processamento de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons/métodos , Trombose Venosa/diagnóstico por imagem , Imagem Corporal Total/métodos , Animais , Arteriopatias Oclusivas/diagnóstico por imagem , Arteriopatias Oclusivas/patologia , Biópsia por Agulha , Modelos Animais de Doenças , Fibrina/metabolismo , Imuno-Histoquímica , Masculino , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Sensibilidade e Especificidade , Trombose Venosa/patologia
9.
J Hepatol ; 63(3): 689-96, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26022693

RESUMO

BACKGROUND & AIMS: Liver biopsy, the gold standard for assessing liver fibrosis, suffers from limitations due to sampling error and invasiveness. There is therefore a critical need for methods to non-invasively quantify fibrosis throughout the entire liver. The goal of this study was to use molecular Magnetic Resonance Imaging (MRI) of Type I collagen to non-invasively image liver fibrosis and assess response to rapamycin therapy. METHODS: Liver fibrosis was induced in rats by bile duct ligation (BDL). MRI was performed 4, 10, or 18 days following BDL. Some BDL rats were treated daily with rapamycin starting on day 4 and imaged on day 18. A three-dimensional (3D) inversion recovery MRI sequence was used to quantify the change in liver longitudinal relaxation rate (ΔR1) induced by the collagen-targeted probe EP-3533. Liver tissue was subjected to pathologic scoring of fibrosis and analyzed for Sirius Red staining and hydroxyproline content. RESULTS: ΔR1 increased significantly with time following BDL compared to controls in agreement with ex vivo measures of increasing fibrosis. Receiver operating characteristic curve analysis demonstrated the ability of ΔR1 to detect liver fibrosis and distinguish intermediate and late stages of fibrosis. EP-3533 MRI correctly characterized the response to rapamycin in 11 out of 12 treated rats compared to the standard of collagen proportional area (CPA). 3D MRI enabled characterization of disease heterogeneity throughout the whole liver. CONCLUSIONS: EP-3533 allowed for staging of liver fibrosis, assessment of response to rapamycin therapy, and demonstrated the ability to detect heterogeneity in liver fibrosis.


Assuntos
Cirrose Hepática Experimental/patologia , Imageamento por Ressonância Magnética/métodos , Sirolimo/uso terapêutico , Animais , Ductos Biliares , Modelos Animais de Doenças , Técnicas de Imagem por Elasticidade , Ligadura , Cirrose Hepática Experimental/tratamento farmacológico , Masculino , Curva ROC , Ratos
10.
J Nucl Med ; 56(7): 1088-93, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25977464

RESUMO

UNLABELLED: The diagnosis of deep venous thromboembolic disease is still challenging despite the progress of current thrombus imaging modalities and new diagnostic algorithms. We recently reported the high target uptake and thrombus imaging efficacy of the novel fibrin-specific PET probe (64)Cu-FBP8. Here, we tested the feasibility of (64)Cu-FBP8 PET to detect source thrombi and culprit emboli after deep vein thrombosis and pulmonary embolism (DVT-PE). To support clinical translation of (64)Cu-FBP8, we performed a human dosimetry estimation using time-dependent biodistribution in rats. METHODS: Sprague-Dawley rats (n = 7) underwent ferric chloride application on the femoral vein to trigger thrombosis. Pulmonary embolism was induced 30 min or 2 d after DVT by intrajugular injection of a preformed blood clot labeled with (125)I-fibrinogen. PET imaging was performed to detect the clots, and SPECT was used to confirm in vivo the location of the pulmonary emboli. Ex vivo γ counting and histopathology were used to validate the imaging findings. Detailed biodistribution was performed in healthy rats (n = 30) at different time points after (64)Cu-FBP8 administration to estimate human radiation dosimetry. Longitudinal whole-body PET/MR imaging (n = 2) was performed after (64)Cu-FBP8 administration to further assess radioactivity clearance. RESULTS: (64)Cu-FBP8 PET imaging detected the location of lung emboli and venous thrombi after DVT-PE, revealing significant differences in uptake between target and background tissues (P < 0.001). In vivo SPECT imaging and ex vivo γ counting confirmed the location of the lung emboli. PET quantification of the venous thrombi revealed that probe uptake was greater in younger clots than in older ones, a result confirmed by ex vivo analyses (P < 0.001). Histopathology revealed an age-dependent reduction of thrombus fibrin content (P = 0.006), further supporting the imaging findings. Biodistribution and whole-body PET/MR imaging showed a rapid, primarily renal, body clearance of (64)Cu-FBP8. The effective dose was 0.021 mSv/MBq for males and 0.027 mSv/MBq for females, supporting the feasibility of using (64)Cu-FBP8 in human trials. CONCLUSION: We showed that (64)Cu-FBP8 PET is a feasible approach to image DVT-PE and that radiogenic adverse health effects should not limit the clinical translation of (64)Cu-FBP8.


Assuntos
Radioisótopos de Cobre/química , Fibrina/química , Tomografia por Emissão de Pósitrons , Embolia Pulmonar/diagnóstico por imagem , Radiometria/métodos , Trombose Venosa/diagnóstico por imagem , Algoritmos , Animais , Feminino , Masculino , Ratos , Ratos Sprague-Dawley , Trombose/diagnóstico por imagem , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único , Imagem Corporal Total
11.
J Nucl Med ; 55(7): 1157-63, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24790217

RESUMO

UNLABELLED: Thrombus formation plays a major role in cardiovascular diseases, but noninvasive thrombus imaging is still challenging. Fibrin is a major component of both arterial and venous thrombi and represents an ideal candidate for imaging of thrombosis. Recently, we showed that (64)Cu-DOTA-labeled PET probes based on fibrin-specific peptides are suitable for thrombus imaging in vivo; however, the metabolic stability of these probes was limited. Here, we describe 4 new probes using either (64)Cu or aluminum fluoride (Al(18)F) chelated to 2 NOTA derivatives. METHODS: Probes were synthesized using a known fibrin-specific peptide conjugated to either NODAGA (FBP8, FBP10) or NOTA-monoamide (FBP9, FBP11) as chelators, followed by labeling with (64)Cu (FBP8 and FBP9) or Al(18)F (FBP10 and FBP11). PET imaging efficacy, pharmacokinetics, biodistribution, and metabolic stability were assessed in a rat model of arterial thrombosis. RESULTS: All probes had similar nanomolar affinity (435-760 nM) for the soluble fibrin fragment DD(E). PET imaging allowed clear visualization of thrombus by all probes, with a 5-fold or higher thrombus-to-background ratio. Compared with the previous DOTA derivative, the new (64)Cu probes FBP8 and FBP9 showed substantially improved metabolic stability (>85% intact in blood at 4 h after injection), resulting in high uptake at the target site (0.5-0.8 percentage injected dose per gram) that persisted over 5 h, producing increasingly greater target-to-background ratios. The thrombus uptake was 5- to 20-fold higher than the uptake in the contralateral artery, blood, muscle, lungs, bone, spleen, large intestine, and heart at 2 h after injection and 10- to 40-fold higher at 5 h. The Al(18)F derivatives FBP10 and FBP11 were less stable, in particular the NODAGA conjugate (FBP10, <30% intact in blood at 4 h after injection), which showed high bone uptake and low thrombus-to-background ratios that decreased over time. The high thrombus-to-contralateral ratios for all probes were confirmed by ex vivo biodistribution and autoradiography. The uptake in the liver (<0.5 percentage injected dose per gram), kidneys, and blood were similar for all tracers, and they all showed predominant renal clearance. CONCLUSION: FBP8, FBP9, and FBP11 showed excellent metabolic stability and high thrombus-to-background ratios and represent promising candidates for imaging of thrombosis in vivo.


Assuntos
Quelantes/química , Fibrina/metabolismo , Peptídeos/química , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos , Animais , Estabilidade de Medicamentos , Compostos Heterocíclicos/química , Compostos Heterocíclicos com 1 Anel , Masculino , Peptídeos/farmacocinética , Ratos , Ratos Wistar , Trombose/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA