Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 218(3): 1127-1142, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28836669

RESUMO

The angiosperm embryo and endosperm are limited in space because they grow inside maternal seed tissues. The elimination of cell layers of the maternal seed coat by programmed cell death (PCD) could provide space and nutrition to the filial organs. Using the barley (Hordeum vulgare L.) seed as a model, we elucidated the role of vacuolar processing enzyme 4 (VPE4) in cereals by using an RNAi approach and targeting the enzymatic properties of the recombinant protein. A comparative characterization of transgenic versus wild-type plants included transcriptional and metabolic profiling, flow cytometry, histology and nuclear magnetic imaging of grains. The recombinant VPE4 protein exhibited legumain and caspase-1 properties in vitro. Pericarp disintegration was delayed in the transgenic grains. Although the VPE4 gene and enzymatic activity was decreased in the early developing pericarp, storage capacity and the size of the endosperm and embryo were reduced in the mature VPE4-repressed grains. The persistence of the pericarp in the VPE4-affected grains constrains endosperm and embryo growth and leads to transcriptional reprogramming, perturbations in signalling and adjustments in metabolism. We conclude that VPE4 expression executes PCD in the pericarp, which is required for later endosperm filling, and argue for a role of PCD in maternal control of seed size in cereals.


Assuntos
Apoptose , Cisteína Endopeptidases/metabolismo , Grão Comestível/anatomia & histologia , Hordeum/anatomia & histologia , Hordeum/citologia , Proteínas de Plantas/metabolismo , Sementes/citologia , Sementes/metabolismo , Apoptose/genética , Caspases/metabolismo , Contagem de Células , Endosperma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Hordeum/genética , Hordeum/crescimento & desenvolvimento , Espectroscopia de Ressonância Magnética , Tamanho do Órgão , Especificidade de Órgãos , Fenótipo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Ploidias , Proteólise , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Transcrição Gênica , Transcriptoma/genética
2.
Transgenic Res ; 22(6): 1089-105, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23720222

RESUMO

The successful use of transgenic plants depends on the strong and stable expression of the heterologous genes. In this study, three introns (PSK7-i1 and PSK7-i3 from Petunia and UBQ10-i1 from Arabidopsis) were tested for their ability to enhance the tapetum-specific expression of a split barnase transgene. We also analyzed the effects of introducing multiple copies of flexible peptide linkers that bridged the fusion domains of the assembled protein. The barnase fragments were assembled into a functional cytotoxin via intein-mediated trans-splicing, thus leading to male sterility through pollen ablation. A total of 14 constructs carrying different combinations of introns and peptide linkers were transformed into wheat plants. The resulting populations (between 41 and 301 independent plants for each construct) were assayed for trait formation. Depending on which construct was used, there was an increase of up to fivefold in the proportion of plants exhibiting male sterility compared to the populations harboring unmodified constructs. Furthermore, the average barnase copy number in the plants displaying male sterility could be reduced. The metabolic profiles of male-sterile transgenic plants and non-transgenic plants were compared using gas chromatography-mass spectrometry. The profiles generated from leaf tissues displayed no differences, thus corroborating the anther specificity of barnase expression. The technical advances achieved in this study may be a valuable contribution for future improvement of transgenic crop systems.


Assuntos
Infertilidade das Plantas/genética , Plantas Geneticamente Modificadas/genética , Ribonucleases/genética , Triticum/genética , Arabidopsis/genética , Proteínas de Bactérias , Flores/genética , Regulação da Expressão Gênica de Plantas , Engenharia Genética , Íntrons , Mutagênese Insercional/genética , Peptídeos/genética , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/metabolismo , Ribonucleases/metabolismo , Trans-Splicing/genética , Triticum/crescimento & desenvolvimento
3.
Plant Cell Physiol ; 49(10): 1572-9, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18772187

RESUMO

Extracellular ATP (eATP) has recently been demonstrated to play a crucial role in plant development and growth. To investigate the fate of eATP within the apoplast, we used intact potato (Solanum tuberosum) tuber slices as an experimental system enabling access to the apoplast without interference of cytosolic contamination. (i) Incubation of intact tuber slices with ATP led to the formation of ADP, AMP, adenosine, adenine and ribose, indicating operation of apyrase, 5'-nucleotidase and nucleosidase. (ii) Measurement of apyrase, 5'-nucleotidase and nucleosidase activities in fractionated tuber tissue confirmed the apoplastic localization for apyrase and phosphatase in potato and led to the identification of a novel cell wall-bound adenosine nucleosidase activity. (iii) When intact tuber slices were incubated with saturating concentrations of adenosine, the conversion of adenosine into adenine was much higher than adenosine import into the cell, suggesting a potential bypass of adenosine import. Consistent with this, import of radiolabeled adenine into tuber slices was inhibited when ATP, ADP or AMP were added to the slices. (iv) In wild-type plants, apyrase and adenosine nucleosidase activities were found to be co-regulated, indicating functional linkage of these enzymes in a shared pathway. (v) Moreover, adenosine nucleosidase activity was reduced in transgenic lines with strongly reduced apoplastic apyrase activity. When taken together, these results suggest that a complete ATP salvage pathway is present in the apoplast of plant cells.


Assuntos
Trifosfato de Adenosina/metabolismo , Parede Celular/enzimologia , N-Glicosil Hidrolases/metabolismo , Solanum tuberosum/enzimologia , 5'-Nucleotidase/metabolismo , Adenina/metabolismo , Adenosina/metabolismo , Apirase/metabolismo , Cromatografia Líquida de Alta Pressão , Cromatografia Gasosa-Espectrometria de Massas , Tubérculos/enzimologia , Plantas Geneticamente Modificadas/enzimologia
4.
Plant Physiol ; 147(3): 1092-109, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18480378

RESUMO

Apyrases hydrolyze nucleoside triphosphates and diphosphates and are found in all eukaryotes and a few prokaryotes. Although their enzymatic properties have been well characterized, relatively little is known regarding their subcellular localization and physiological function in plants. In this study, we used reverse genetic and biochemical approaches to investigate the role of potato (Solanum tuberosum)-specific apyrase. Silencing of the apyrase gene family with RNA interference constructs under the control of the constitutive 35S promoter led to a strong decrease in apyrase activity to below 10% of the wild-type level. This decreased activity led to phenotypic changes in the transgenic lines, including a general retardation in growth, an increase in tuber number per plant, and differences in tuber morphology. Silencing of apyrase under the control of a tuber-specific promoter led to similar changes in tuber morphology; however, there were no direct effects of apyrase inhibition on tuber metabolism. DNA microarrays revealed that decreased expression of apyrase leads to increased levels of transcripts coding for cell wall proteins involved in growth and genes involved in energy transfer and starch synthesis. To place these results in context, we determined the subcellular localization of the potato-specific apyrase. Using a combination of approaches, we were able to demonstrate that this enzyme is localized to the apoplast. We describe the evidence that underlies both this fact and that potato-specific apyrase has a crucial role in regulating growth and development.


Assuntos
Apirase/metabolismo , Tubérculos/enzimologia , Solanum tuberosum/enzimologia , Apirase/genética , Clonagem Molecular , Sequência Consenso , Expressão Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/metabolismo , Epiderme Vegetal/enzimologia , Folhas de Planta/enzimologia , Tubérculos/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/enzimologia , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/crescimento & desenvolvimento
5.
Plant Physiol ; 146(4): 1579-98, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18305207

RESUMO

Heterotrophic carbon metabolism has been demonstrated to be limited by oxygen availability in a variety of plant tissues, which in turn inevitably affects the adenylate status. To study the effect of altering adenylate energy metabolism, without changing the oxygen supply, we expressed a plastidially targeted ATP/ADP hydrolyzing phosphatase (apyrase) in tubers of growing potato (Solanum tuberosum) plants under the control of either inducible or constitutive promoters. Inducible apyrase expression in potato tubers, for a period of 24 h, resulted in a decrease in the ATP-content and the ATP-ADP ratio in the tubers. As revealed by metabolic profiling, this was accompanied by a decrease in the intermediates of sucrose to starch conversion and several plastidially synthesized amino acids, indicating a general depression of tuber metabolism. Constitutive tuber-specific apyrase expression did not lead to a reduction of ATP, but rather a decrease in ADP and an increase in AMP levels. Starch accumulation was strongly inhibited and shifted to the production of amylopectin instead of amylose in these tubers. Furthermore, the levels of almost all amino acids were decreased, although soluble sugars and hexose-Ps were highly abundant. Respiration was elevated in the constitutively expressing lines indicating a compensation for the dramatic increase in ATP hydrolysis. The increase in respiration did not affect the internal oxygen tensions in the tubers. However, the tubers developed a ginger-like phenotype having an elevated surface-volume ratio and a reduced mass per tuber. Decreased posttranslational redox activation of ADP-glucose pyrophosphorylase and a shift in the ratio of soluble starch synthase activity to granule-bound starch synthase activity were found to be partially responsible for the alterations in starch structure and abundance. The activity of alcohol dehydrogenase was decreased and pyruvate decarboxylase was induced, but this was neither reflected by an increase in fermentation products nor in the cellular redox state, indicating that fermentation was not yet induced in the transgenic lines. When taken together the combined results of these studies allow the identification of both short- and long-term adaptation of plant metabolism and development to direct changes in the adenylate status.


Assuntos
Adaptação Fisiológica , Monofosfato de Adenosina/metabolismo , Solanum tuberosum/crescimento & desenvolvimento , Solanum tuberosum/metabolismo , Sequência de Bases , Primers do DNA , Metabolismo Energético , Dados de Sequência Molecular , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Solanum tuberosum/genética , Solanum tuberosum/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA