Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2797: 271-285, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38570467

RESUMO

With recent advances proving that effective inhibition of KRAS is possible, there have been significant efforts made to develop inhibitors of specific mutant alleles. Here we describe a detailed protocol that employs homogeneous time-resolved fluorescence (HTRF) to identify compounds acting on KRAS signaling in malignant cell lines. This method allows for high-throughput, cell-based screens of large compound libraries for the development of RAS-targeted therapeutics.


Assuntos
Antineoplásicos , Proteínas Proto-Oncogênicas p21(ras) , Proteínas Proto-Oncogênicas p21(ras)/genética , Antineoplásicos/farmacologia , Linhagem Celular , Transdução de Sinais , Ensaios de Triagem em Larga Escala/métodos , Linhagem Celular Tumoral
2.
Sci Adv ; 10(7): eadj4137, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38354232

RESUMO

KRAS, the most frequently mutated oncogene in human cancer, produces two isoforms, KRAS4a and KRAS4b, through alternative splicing. These isoforms differ in exon 4, which encodes the final 15 residues of the G-domain and hypervariable regions (HVRs), vital for trafficking and membrane localization. While KRAS4b has been extensively studied, KRAS4a has been largely overlooked. Our multidisciplinary study compared the structural and functional characteristics of KRAS4a and KRAS4b, revealing distinct structural properties and thermal stability. Position 151 influences KRAS4a's thermal stability, while position 153 affects binding to RAF1 CRD protein. Nuclear magnetic resonance analysis identified localized structural differences near sequence variations and provided a solution-state conformational ensemble. Notably, KRAS4a exhibits substantial transcript abundance in bile ducts, liver, and stomach, with transcript levels approaching KRAS4b in the colon and rectum. Functional disparities were observed in full-length KRAS variants, highlighting the impact of HVR variations on interaction with trafficking proteins and downstream effectors like RAF and PI3K within cells.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Conformação Molecular , Isoformas de Proteínas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética
3.
Cell Syst ; 13(9): 724-736.e9, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36057257

RESUMO

Identifying the chemical regulators of biological pathways is a time-consuming bottleneck in developing therapeutics and research compounds. Typically, thousands to millions of candidate small molecules are tested in target-based biochemical screens or phenotypic cell-based screens, both expensive experiments customized to each disease. Here, our uncustomized, virtual, profile-based screening approach instead identifies compounds that match to pathways based on the phenotypic information in public cell image data, created using the Cell Painting assay. Our straightforward correlation-based computational strategy retrospectively uncovered the expected, known small-molecule regulators for 32% of positive-control gene queries. In prospective, discovery mode, we efficiently identified new compounds related to three query genes and validated them in subsequent gene-relevant assays, including compounds that phenocopy or pheno-oppose YAP1 overexpression and kill a Yap1-dependent sarcoma cell line. This image-profile-based approach could replace many customized labor- and resource-intensive screens and accelerate the discovery of biologically and therapeutically useful compounds.


Assuntos
Estudos Prospectivos , Linhagem Celular , Estudos Retrospectivos
4.
J Fish Dis ; 44(1): 73-88, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32944982

RESUMO

The Tasmanian salmon industry had remained relatively free of major viral diseases until the emergence of pilchard orthomyxovirus (POMV). Originally isolated from wild pilchards, POMV is of concern to the industry as it can cause high mortality in farmed salmon (Salmo salar). Field observations suggest the virus can spread from pen to pen and between farms, but evidence of passive transmission in sea water was unclear. Our aim was to establish whether direct contact between infected and naïve fish was required for transmission, and to examine viral infection dynamics. Atlantic salmon post-smolts were challenged with POMV by either direct exposure via cohabitation or indirect exposure via virus-contaminated sea water. POMV was transmissible in sea water and direct contact between fish was not required for infection. Head kidney and heart presented the highest viral loads in early stages of infection. POMV survivors presented low viral loads in most tissues, but these remained relatively high in gills. A consistent feature was the infiltration of viral-infected melanomacrophages in different tissues, suggesting an important role of these in the immune response to POMV. Understanding POMV transmission and host-pathogen interactions is key for the development of improved surveillance tools, transmission models and ultimately for disease prevention.


Assuntos
Doenças dos Peixes/transmissão , Infecções por Orthomyxoviridae/veterinária , Salmo salar/virologia , Água do Mar/virologia , Animais , Feminino , Doenças dos Peixes/virologia , Brânquias/virologia , Rim Cefálico/virologia , Coração/virologia , Orthomyxoviridae , Infecções por Orthomyxoviridae/transmissão , Carga Viral
5.
J Biol Chem ; 295(28): 9335-9348, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32393580

RESUMO

The oncogene RAS is one of the most widely studied proteins in cancer biology, and mutant active RAS is a driver in many types of solid tumors and hematological malignancies. Yet the biological effects of different RAS mutations and the tissue-specific clinical implications are complex and nuanced. Here, we identified an internal tandem duplication (ITD) in the switch II domain of NRAS from a patient with extremely aggressive colorectal carcinoma. Results of whole-exome DNA sequencing of primary and metastatic tumors indicated that this mutation was present in all analyzed metastases and excluded the presence of any other clear oncogenic driver mutations. Biochemical analysis revealed increased interaction of the RAS ITD with Raf proto-oncogene Ser/Thr kinase (RAF), leading to increased phosphorylation of downstream MAPK/ERK kinase (MEK)/extracellular signal-regulated kinase (ERK). The ITD prevented interaction with neurofibromin 1 (NF1)-GTPase-activating protein (GAP), providing a mechanism for sustained activity of the RAS ITD protein. We present the first crystal structures of NRAS and KRAS ITD at 1.65-1.75 Å resolution, respectively, providing insight into the physical interactions of this class of RAS variants with its regulatory and effector proteins. Our in-depth bedside-to-bench analysis uncovers the molecular mechanism underlying a case of highly aggressive colorectal cancer and illustrates the importance of robust biochemical and biophysical approaches in the implementation of individualized medicine.


Assuntos
Neoplasias Colorretais , GTP Fosfo-Hidrolases , Sistema de Sinalização das MAP Quinases , Proteínas de Membrana , Mutação , Proteínas Proto-Oncogênicas p21(ras) , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Cristalografia por Raios X , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Células HEK293 , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Domínios Proteicos , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Sequenciamento do Exoma , Quinases raf/genética , Quinases raf/metabolismo
6.
Elife ; 92020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31958057

RESUMO

The RAS proteins are GTP-dependent switches that regulate signaling pathways and are frequently mutated in cancer. RAS proteins concentrate in the plasma membrane via lipid-tethers and hypervariable region side-chain interactions in distinct nano-domains. However, little is known about RAS membrane dynamics and the details of RAS activation of downstream signaling. Here, we characterize RAS in live human and mouse cells using single-molecule-tracking methods and estimate RAS mobility parameters. KRAS4b exhibits confined mobility with three diffusive states distinct from the other RAS isoforms (KRAS4a, NRAS, and HRAS); and although most of the amino acid differences between RAS isoforms lie within the hypervariable region, the additional confinement of KRAS4b is largely determined by the protein's globular domain. To understand the altered mobility of an oncogenic KRAS4b, we used complementary experimental and molecular dynamics simulation approaches to reveal a detailed mechanism.


Assuntos
Membrana Celular , Proteínas Proto-Oncogênicas p21(ras) , Animais , Linhagem Celular , Membrana Celular/química , Membrana Celular/metabolismo , Células HeLa , Humanos , Camundongos , Simulação de Dinâmica Molecular , Domínios Proteicos , Isoformas de Proteínas , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
7.
J Proteomics ; 209: 103488, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31445215

RESUMO

Today we have unprecedented access to human genomic and proteomic data that appear to be rapidly approaching our current understanding of comprehensive coverage. Combining genomic information with shotgun proteomics remains challenging due to the large increase in proteomics search space. However, making this connection between genomic and proteomic information is critical for cancer studies to vaccine development. Furthermore, as we progress towards personalized medicine, it will be essential for proteomics analysis to identify individual mutations and variants in order to fully understand protein networks and to develop personalized therapies. While these advantages are well-established, only a few studies have demonstrated the successful integration of proteomic data with large genomic input. We present and examine the abilities of Bolt, a new cloud-based proteomics search engine to search for the presence of over 2.3 million known cancer mutations in a matter of minutes while still performing a standard proteomics search that includes 31 post translational modifications. We use previously published proteomics data sets and identify mutations that are verified using genomic studies as well as previous proteomics efforts. Our results also emphasize the need to search for mutations in a comprehensive manner while still searching for both common and rare PTMs. SIGNIFICANCE: We present and examine the abilities of Bolt, a new cloud-based proteomics search engine to search for the presence of over 2.3 million known cancer mutations in a matter of minutes while still performing a standard proteomics search that includes 31 post translational modifications. No other proteomics search software can do so.


Assuntos
Computação em Nuvem , Mutação , Neoplasias/genética , Proteômica/métodos , Ferramenta de Busca/métodos , Linhagem Celular Tumoral , Genômica/métodos , Humanos , Processamento de Proteína Pós-Traducional , Ferramenta de Busca/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA