Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Breast Cancer Res ; 25(1): 84, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37461077

RESUMO

The receptor for advanced glycation end products (RAGE) is implicated in diabetes and obesity complications, as well as in breast cancer (BC). Herein, we evaluated whether RAGE contributes to the oncogenic actions of Insulin, which plays a key role in BC progression particularly in obese and diabetic patients. Analysis of the publicly available METABRIC study, which collects gene expression and clinical data from a large cohort (n = 1904) of BC patients, revealed that RAGE and the Insulin Receptor (IR) are co-expressed and associated with negative prognostic parameters. In MCF-7, ZR75 and 4T1 BC cells, as well as in patient-derived Cancer-Associated Fibroblasts, the pharmacological inhibition of RAGE as well as its genetic depletion interfered with Insulin-induced activation of the oncogenic pathway IR/IRS1/AKT/CD1. Mechanistically, IR and RAGE directly interacted upon Insulin stimulation, as shown by in situ proximity ligation assays and coimmunoprecipitation studies. Of note, RAGE inhibition halted the activation of both IR and insulin like growth factor 1 receptor (IGF-1R), as demonstrated in MCF-7 cells KO for the IR and the IGF-1R gene via CRISPR-cas9 technology. An unbiased label-free proteomic analysis uncovered proteins and predicted pathways affected by RAGE inhibition in Insulin-stimulated BC cells. Biologically, RAGE inhibition reduced cell proliferation, migration, and patient-derived mammosphere formation triggered by Insulin. In vivo, the pharmacological inhibition of RAGE halted Insulin-induced tumor growth, without affecting blood glucose homeostasis. Together, our findings suggest that targeting RAGE may represent an appealing opportunity to blunt Insulin-induced oncogenic signaling in BC.


Assuntos
Neoplasias da Mama , Insulina , Receptor para Produtos Finais de Glicação Avançada , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proteômica , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Transdução de Sinais/fisiologia
3.
Eur J Vasc Endovasc Surg ; 52(1): 114-8, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27220899

RESUMO

OBJECTIVE/BACKGROUND: Chronic venous disease (CVD) is a common and relevant problem affecting Western people. The role of estrogens and their receptors in the venous wall seems to support the major prevalence of CVD in women. The effects of the estrogens are mediated by three estrogen receptors (ERs): ERα, ERß, and G protein-coupled ER (GPER). The expression of ERs in the vessel walls of varicose veins is evaluated. METHODS: In this prospective study, patients of both sexes, with CVD and varicose veins undergoing open venous surgery procedures, were enrolled in order to obtain vein samples. To obtain control samples of healthy veins, patients of both sexes without CVD undergoing coronary artery bypass grafting with autologous saphenous vein were recruited (control group). Samples were processed in order to evaluate gene expression. RESULTS: Forty patients with CVD (10 men [25%], 30 women [75%], mean age 54.3 years [median 52 years, range 33-74 years]) were enrolled. Five patients without CVD (three men, two women [aged 61-73 years]) were enrolled as the control group. A significant increase of tissue expression of ERα, ERß and GPER in patients with CVD was recorded (p < .01), which was also related to the severity of venous disease. CONCLUSION: ERs seem to play a role in CVD; in this study, the expression of ERs correlated with the severity of the disease, and their expression was correlated with the clinical stage.


Assuntos
Receptores de Estrogênio/análise , Varizes/metabolismo , Veias/química , Adulto , Idoso , Estudos de Casos e Controles , Doença Crônica , Receptor alfa de Estrogênio/análise , Receptor beta de Estrogênio/análise , Feminino , Humanos , Masculino , Memória Episódica , Pessoa de Meia-Idade , Receptores Acoplados a Proteínas G/análise
4.
Cell Death Dis ; 6: e1834, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26225773

RESUMO

A number of tumors exhibit an altered expression of sirtuins, including NAD+-dependent histone deacetylase silent information regulator 1 (SIRT1) that may act as a tumor suppressor or tumor promoter mainly depending on the tumor types. For instance, in breast cancer cells SIRT1 was shown to exert an essential role toward the oncogenic signaling mediated by the estrogen receptor-α (ERα). In accordance with these findings, the suppression of SIRT1 led to the inhibition of the transduction pathway triggered by ERα. As the regulation of SIRT1 has not been investigated in cancer cells lacking ER, in the present study we ascertained the expression and function of SIRT1 by estrogens in ER-negative breast cancer cells and cancer-associated fibroblasts obtained from breast cancer patients. Our results show that 17ß-estradiol (E2) and the selective ligand of GPER, namely G-1, induce the expression of SIRT1 through GPER and the subsequent activation of the EGFR/ERK/c-fos/AP-1 transduction pathway. Moreover, we demonstrate that SIRT1 is involved in the pro-survival effects elicited by E2 through GPER, like the prevention of cell cycle arrest and cell death induced by the DNA damaging agent etoposide. Interestingly, the aforementioned actions of estrogens were abolished silencing GPER or SIRT1, as well as using the SIRT1 inhibitor Sirtinol. In addition, we provide evidence regarding the involvement of SIRT1 in tumor growth stimulated by GPER ligands in breast cancer cells and xenograft models. Altogether, our data suggest that SIRT1 may be included in the transduction network activated by estrogens through GPER toward the breast cancer progression.


Assuntos
Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , Receptores de Estrogênio/genética , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/genética , Sirtuína 1/genética , Animais , Antineoplásicos Fitogênicos/farmacologia , Benzamidas/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclopentanos/farmacologia , Receptores ErbB/genética , Receptores ErbB/metabolismo , Estradiol/farmacologia , Etoposídeo/farmacologia , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Camundongos Nus , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Naftóis/farmacologia , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Quinolinas/farmacologia , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sirtuína 1/antagonistas & inibidores , Sirtuína 1/metabolismo , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA