RESUMO
Shwachman-Diamond Syndrome (SDS) is a rare autosomal recessive genetic condition with 90% of cases associated with biallelic pathogenic variants in the Shwachman-Bodian-Diamond Syndrome (SBDS) gene on chromosome 7q.11.21. SDS belongs to ribosomopathies since SBDS gene encodes a protein involved in ribosomal maturation. Its phenotypic postnatal hallmark features include growth delay, bone marrow failure, exocrine pancreatic insufficiency, and skeletal abnormalities. We report a first fetal case of Shwachman-Diamond syndrome and extend its phenotype before birth. The clinical features mimicked vascular growth restriction with FGR and shortened long bones, associated with abnormal Doppler indices. Non-restricted fetal autopsy after termination of pregnancy allowed deep phenotyping disclosing the features of fetal skeletal dysplasia. Post-fetopathological trio exome sequencing identified biallelic pathogenic variants in the SBDS gene. Genotype-phenotype correlations confirmed the diagnosis and enabled an adequate genetic counseling of the parents. Our case is another example of the positive impact of fetal autopsy coupled with post-fetopathological genomic studies, even in the cases that were hitherto classified as maternal or fetal vascular malperfusion.
RESUMO
Arthrogryposis multiplex congenita (AMC) is a developmental condition characterized by multiple joint contractures resulting from reduced or absent fetal movements. Through genetic mapping of disease loci and whole-exome sequencing in four unrelated multiplex families presenting with severe AMC, we identified biallelic loss-of-function mutations in LGI4 (leucine-rich glioma-inactivated 4). LGI4 is a ligand secreted by Schwann cells that regulates peripheral nerve myelination via its cognate receptor ADAM22 expressed by neurons. Immunolabeling experiments and transmission electron microscopy of the sciatic nerve from one of the affected individuals revealed a lack of myelin. Functional tests using affected individual-derived iPSCs showed that these germline mutations caused aberrant splicing of the endogenous LGI4 transcript and in a cell-based assay impaired the secretion of truncated LGI4 protein. This is consistent with previous studies reporting arthrogryposis in Lgi4-deficient mice due to peripheral hypomyelination. This study adds to the recent reports implicating defective axoglial function as a key cause of AMC.
Assuntos
Artrogripose/genética , Proteínas da Matriz Extracelular/genética , Mutação , Células de Schwann/metabolismo , Artrogripose/diagnóstico , Artrogripose/patologia , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Bainha de Mielina/metabolismo , Proteínas do Tecido Nervoso , LinhagemRESUMO
OBJECTIVES: Conradi-Hünermann-Happle [X-linked dominant chondrodysplasia punctata 2 (CDPX2)] syndrome is a rare X-linked dominant skeletal dysplasia usually lethal in men while affected women show wide clinical heterogeneity. Different EBP mutations have been reported. Severe female cases have rarely been reported, with only six antenatal presentations. METHODS: To better characterize the phenotype in female fetuses, we included nine antenatally diagnosed cases of women with EBP mutations. All cases were de novo except for two fetuses with an affected mother and one case of germinal mosaicism. RESULTS: The mean age at diagnosis was 22 weeks of gestation. The ultrasound features mainly included bone abnormalities: shortening (8/9 cases) and bowing of the long bones (5/9), punctuate epiphysis (7/9) and an irregular aspect of the spine (5/9). Postnatal X-rays and examination showed ichthyosis (8/9) and epiphyseal stippling (9/9), with frequent asymmetric short and bowed long bones. The X-inactivation pattern of the familial case revealed skewed X-inactivation in the mildly symptomatic mother and random X-inactivation in the severe fetal case. Differently affected skin samples of the same fetus revealed different patterns of X-inactivation. CONCLUSION: Prenatal detection of asymmetric shortening and bowing of the long bones and cartilage stippling should raise the possibility of CPDX2 in female fetuses, especially because the majority of such cases involve de novo mutations.