Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genome Med ; 16(1): 43, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515211

RESUMO

BACKGROUND: Limited understanding of the diversity of variants in the cystic fibrosis transmembrane conductance regulator (CFTR) gene across ancestries hampers efforts to advance molecular diagnosis of cystic fibrosis (CF). The consequences pose a risk of delayed diagnoses and subsequently worsened health outcomes for patients. Therefore, characterizing the spectrum of CFTR variants across ancestries is critical for revolutionizing molecular diagnoses of CF. METHODS: We analyzed 454,727 UK Biobank (UKBB) whole-exome sequences to characterize the diversity of CFTR variants across ancestries. Using the PanUKBB classification, the participants were assigned into six major groups: African (AFR), American/American Admixed (AMR), Central South Asia (CSA), East Asian (EAS), European (EUR), and Middle East (MID). We segregated ancestry-specific CFTR variants, including those that are CF-causing or clinically relevant. The ages of certain CF-causing variants were determined and analyzed for selective pressure effects, and curated phenotype analysis was performed for participants with clinically relevant CFTR genotypes. RESULTS: We detected over 4000 CFTR variants, including novel ancestry-specific variants, across six ancestries. Europeans had the most unique CFTR variants [n = 2212], while the American group had the least unique variants [n = 23]. F508del was the most prevalent CF-causing variant found in all ancestries, except in EAS, where V520F was the most prevalent. Common EAS variants such as 3600G > A, V456A, and V520, which appeared approximately 270, 215, and 338 generations ago, respectively, did not show evidence of selective pressure. Sixteen participants had two CF-causing variants, with two being diagnosed with CF. We found 154 participants harboring a CF-causing and varying clinical consequences (VCC) variant. Phenotype analysis performed for participants with multiple clinically relevant variants returned significant associations with CF and its pulmonary phenotypes [Bonferroni-adjusted p < 0.05]. CONCLUSIONS: We leveraged the UKBB database to comprehensively characterize the broad spectrum of CFTR variants across ancestries. The detection of over 4000 CFTR variants, including several ancestry-specific and uncharacterized CFTR variants, warrants the need for further characterization of their functional and clinical relevance. Overall, the presentation of classical CF phenotypes seen in non-CF diagnosed participants with more than one CF-causing variant indicates that they may benefit from current CFTR modulator therapies.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Humanos , Bancos de Espécimes Biológicos , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Exoma , Mutação , Biobanco do Reino Unido
2.
iScience ; 26(9): 107576, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37664640

RESUMO

Heritability in the immune tumor microenvironment (iTME) has been widely observed yet remains largely uncharacterized. Here, we developed a machine learning approach to map iTME modifiers within loci from genome-wide association studies (GWASs) for breast cancer (BrCa) incidence. A random forest model was trained on a positive set of immune-oncology (I-O) targets, and then used to assign I-O target probability scores to 1,362 candidate genes in linkage disequilibrium with 155 BrCa GWAS loci. Cluster analysis of the most probable candidates revealed two subfamilies of genes related to effector functions and adaptive immune responses, suggesting that iTME modifiers impact multiple aspects of anticancer immunity. Two of the top ranking BrCa candidates, LSP1 and TLR1, were orthogonally validated as iTME modifiers using BrCa patient biopsies and comparative mapping studies, respectively. Collectively, these data demonstrate a robust and flexible framework for functionally fine-mapping GWAS risk loci to identify translatable therapeutic targets.

4.
Signal Transduct Target Ther ; 7(1): 51, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35185150

RESUMO

Despite high initial response rates, acute myeloid leukemia (AML) treated with the BCL-2-selective inhibitor venetoclax (VEN) alone or in combinations commonly acquires resistance. We performed gene/protein expression, metabolomic and methylation analyses of isogenic AML cell lines sensitive or resistant to VEN, and identified the activation of RAS/MAPK pathway, leading to increased stability and higher levels of MCL-1 protein, as a major acquired mechanism of VEN resistance. MCL-1 sustained survival and maintained mitochondrial respiration in VEN-RE cells, which had impaired electron transport chain (ETC) complex II activity, and MCL-1 silencing or pharmacologic inhibition restored VEN sensitivity. In support of the importance of RAS/MAPK activation, we found by single-cell DNA sequencing rapid clonal selection of RAS-mutated clones in AML patients treated with VEN-containing regimens. In summary, these findings establish RAS/MAPK/MCL-1 and mitochondrial fitness as key survival mechanisms of VEN-RE AML and provide the rationale for combinatorial strategies effectively targeting these pathways.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Leucemia Mieloide Aguda , Sistema de Sinalização das MAP Quinases , Proteína de Sequência 1 de Leucemia de Células Mieloides , Proteínas Proto-Oncogênicas c-bcl-2 , Sulfonamidas , Proteínas ras , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Sulfonamidas/farmacologia
5.
Oncotarget ; 13: 1-12, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35018214

RESUMO

Inhibitors of poly(ADP)-ribose polymerase (PARP) exploit defective DNA repair pathways existing in several forms of cancer, such as those with BRCA mutations, and have proven clinical efficacy as chemosensitizers. However, platinum-based chemopotentiation by PARP inhibitors (PARPi), particularly for non-small cell lung cancer (NSCLC), has only been confirmed in a few preclinical models and the molecular mechanisms that drive PARPi combinatorial synergy with chemotherapeutics remains poorly defined. To better understand these mechanisms, we characterized cisplatin and veliparib efficacy in A549 and Calu6 NSCLC in vivo tumor xenograft models and observed combinatorial synergy in the Calu6 model. Transcriptome-wide analysis of xenografts revealed several differentially expressed genes (DEGs) between untreated and cisplatin + veliparib-treated groups, which were unique from genes identified in either of the single-agent treatment arms. Particularly at 10- and 21-days post-treatment, these DEGs were enriched within pathways involved in DNA damage repair, cell cycle regulation, and senescence. Furthermore, TGF-ß- and integrin-related pathways were enriched in the combination treatment arm, while pathways involved in cholesterol metabolism were identified at earlier time points in both the combination and cisplatin-only groups. These data advance the biological underpinnings of PARPi combined with platinum-based chemotherapy and provides additional insight into the diverse sensitivity of NSCLC models.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Difosfato de Adenosina , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Colesterol , Cisplatino , Humanos , Integrinas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Platina/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Poli(ADP-Ribose) Polimerases/metabolismo , Ribose/uso terapêutico , Transcriptoma , Fator de Crescimento Transformador beta/genética
6.
Clin Cancer Res ; 27(18): 4983-4993, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34131001

RESUMO

PURPOSE: Safety, efficacy, and exploratory biomarker analyses were evaluated in patients with advanced HER2-negative germline breast cancer susceptibility gene (gBRCA)-associated breast cancer enrolled in the BROCADE3 trial who received crossover veliparib monotherapy after disease progression on placebo plus carboplatin/paclitaxel. PATIENTS AND METHODS: Eligible patients (N = 513) were randomized 2:1 to veliparib plus carboplatin/paclitaxel or placebo plus carboplatin/paclitaxel; patients had variable platinum-free intervals (PFI) at progression. In the placebo arm, patients were eligible to receive crossover veliparib monotherapy (300-400 mg twice daily continuous). Antitumor activity and adverse events were assessed during crossover veliparib treatment. BRCA reversion mutations at crossover were analyzed retrospectively using next-generation sequencing on plasma circulating tumor DNA (ctDNA). RESULTS: Seventy-five patients in the placebo plus carboplatin/paclitaxel arm received ≥1 dose of crossover veliparib postprogression (mean treatment duration: 154 days). Eight of 50 (16%) patients with measurable disease had a RECIST v1.1 response. Activity was greater in patients with PFI ≥180 days compared with <180 days [responses in 23.1% (3/13) vs. 13.5% (5/37) of patients]. BRCA reversion mutations that restored protein function were detected in ctDNA from 4 of 28 patients tested, and the mean duration of crossover veliparib monotherapy was <1 month in these 4 patients versus 7.49 months in patients lacking reversion mutations. The most frequent adverse events were nausea (61%), vomiting (29%), and fatigue (24%). CONCLUSIONS: Crossover veliparib monotherapy demonstrated limited antitumor activity in patients who experienced disease progression on placebo plus carboplatin/paclitaxel. PFI appeared to affect veliparib activity. BRCA reversion mutations may promote cross-resistance and limit veliparib activity following progression on platinum.


Assuntos
Neoplasias da Mama , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Benzimidazóis , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Carboplatina/efeitos adversos , Feminino , Humanos , Mutação , Paclitaxel/efeitos adversos , Platina/uso terapêutico , Estudos Retrospectivos
7.
J Hered ; 111(1): 21-32, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31723957

RESUMO

The Hawai'ian honeycreepers (drepanids) are a classic example of adaptive radiation: they adapted to a variety of novel dietary niches, evolving a wide range of bill morphologies. Here we investigated genomic diversity, demographic history, and genes involved in bill morphology phenotypes in 2 honeycreepers: the 'akiapola'au (Hemignathus wilsoni) and the Hawai'i 'amakihi (Chlorodrepanis virens). The 'akiapola'au is an endangered island endemic, filling the "woodpecker" niche by using a unique bill morphology, while the Hawai'i 'amakihi is a dietary generalist common on the islands of Hawai'i and Maui. We de novo sequenced the 'akiapola'au genome and compared it to the previously sequenced 'amakihi genome. The 'akiapola'au is far less heterozygous and has a smaller effective population size than the 'amakihi, which matches expectations due to its smaller census population and restricted ecological niche. Our investigation revealed genomic islands of divergence, which may be involved in the honeycreeper radiation. Within these islands of divergence, we identified candidate genes (including DLK1, FOXB1, KIF6, MAML3, PHF20, RBP1, and TIMM17A) that may play a role in honeycreeper adaptations. The gene DLK1, previously shown to influence Darwin's finch bill size, may be related to honeycreeper bill morphology evolution, while the functions of the other candidates remain unknown.


Assuntos
Adaptação Biológica , Especiação Genética , Passeriformes/genética , Animais , Ecossistema , Evolução Molecular , Feminino , Variação Genética , Genoma , Masculino , Anotação de Sequência Molecular , Passeriformes/anatomia & histologia
8.
Mol Cancer Ther ; 18(7): 1302-1311, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31064868

RESUMO

Proteolysis-targeting chimeras (PROTAC) are bifunctional molecules that hijack endogenous E3 ubiquitin ligases to induce ubiquitination and subsequent degradation of protein of interest. Recently, it has been shown that PROTACs with robust in vitro and in vivo activities and, in some cases, drug-like pharmaceutical properties can be generated using small-molecule ligands for the E3 ligases VHL and CRBN. These findings stoked tremendous enthusiasm on using PROTACs for therapeutics development. Innate and acquired drug resistance often underlies therapeutic failures, particularly for cancer therapy. With the PROTAC technology progressing rapidly toward therapeutic applications, it would be important to understand whether and how resistance to these novel agents may emerge. Using BET-PROTACs as a model system, we demonstrate that resistance to both VHL- and CRBN-based PROTACs can occur in cancer cells following chronic treatment. However, unlike what was often observed for many targeted therapeutics, resistance to BET-PROTACs did not result from secondary mutations that affect compound binding to the target. In contrast, acquired resistance to both VHL- and CRBN-based BET-PROTACs was primarily caused by genomic alterations that compromise core components of the relevant E3 ligase complexes.


Assuntos
Genômica , Ubiquitina-Proteína Ligases , Humanos , Linhagem Celular Tumoral , Genômica/métodos , Ubiquitina-Proteína Ligases/metabolismo , Proteólise
9.
Science ; 359(6375): 550-555, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29217587

RESUMO

Somatic mosaicism in the human brain may alter function of individual neurons. We analyzed genomes of single cells from the forebrains of three human fetuses (15 to 21 weeks postconception) using clonal cell populations. We detected 200 to 400 single-nucleotide variations (SNVs) per cell. SNV patterns resembled those found in cancer cell genomes, indicating a role of background mutagenesis in cancer. SNVs with a frequency of >2% in brain were also present in the spleen, revealing a pregastrulation origin. We reconstructed cell lineages for the first five postzygotic cleavages and calculated a mutation rate of ~1.3 mutations per division per cell. Later in development, during neurogenesis, the mutation spectrum shifted toward oxidative damage, and the mutation rate increased. Both neurogenesis and early embryogenesis exhibit substantially more mutagenesis than adulthood.


Assuntos
Encéfalo/embriologia , Gastrulação/genética , Mosaicismo , Mutagênese , Taxa de Mutação , Neurogênese/genética , Linhagem da Célula/genética , Genoma Humano , Humanos , Mutação , Neoplasias/genética , Neurônios , Polimorfismo de Nucleotídeo Único , Análise de Célula Única
10.
J Exp Med ; 213(1): 25-34, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26666262

RESUMO

t(8;21) is one of the most frequent chromosomal abnormalities observed in acute myeloid leukemia (AML). However, expression of AML1-ETO is not sufficient to induce transformation in vivo. Consistent with this observation, patients with this translocation harbor additional genetic abnormalities, suggesting a requirement for cooperating mutations. To better define the genetic landscape in AML and distinguish driver from passenger mutations, we compared the mutational profiles of AML1-ETO-driven mouse models of leukemia with the mutational profiles of human AML patients. We identified TET2 and PTPN11 mutations in both mouse and human AML and then demonstrated the ability of Tet2 loss and PTPN11 D61Y to initiate leukemogenesis in concert with expression of AML1-ETO in vivo. This integrative genetic profiling approach allowed us to accurately predict cooperating events in t(8;21)(+) AML in a robust and unbiased manner, while also revealing functional convergence in mouse and human AML.


Assuntos
Alelos , Epistasia Genética , Genômica/métodos , Leucemia Mieloide Aguda/genética , Animais , Transformação Celular Neoplásica/genética , Cromossomos Humanos Par 21 , Cromossomos Humanos Par 8 , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Modelos Animais de Doenças , Regulação Leucêmica da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Camundongos , Mutação , Proteínas de Fusão Oncogênica/genética , Fenótipo , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteína 1 Parceira de Translocação de RUNX1 , Translocação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA