Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38712200

RESUMO

The role of extracellular vesicles (EVs) in human health and disease has garnered considerable attention over the past two decades. However, while several types of EVs are known to interact dynamically with the extracellular matrix and there is great potential value in producing high-fidelity EV micropatterns, there are currently no label-free, high-resolution, and tunable platform technologies with this capability. We introduce Light-induced Extracellular Vesicle Adsorption (LEVA) as a powerful solution to rapidly advance the study of matrix- and surface-bound EVs and other particles. The versatility of LEVA is demonstrated using commercial GFP-EV standards, EVs from glioblastoma bioreactors, and E. coli outer membrane vesicles (OMVs), with the resulting patterns used for single EV characterization, single cell migration on migrasome-mimetic trails, and OMV-mediated neutrophil swarming. LEVA will enable rapid advancements in the study of matrix- and surface-bound EVs and other particles, and should encourage researchers from many disciplines to create novel diagnostic, biomimetic, immunoengineering, and therapeutic screening assays.

2.
Adv Sci (Weinh) ; 11(11): e2306373, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38204202

RESUMO

Detecting pancreatic duct adenocarcinoma (PDAC) in its early stages and predicting late-stage patient prognosis undergoing chemotherapy is challenging. This work shows that the activation of specific oncogenes leads to elevated expression of mRNAs and their corresponding proteins in extracellular vesicles (EVs) circulating in blood. Utilizing an immune lipoplex nanoparticle (ILN) biochip assay, these findings demonstrate that glypican 1 (GPC1) mRNA expression in the exosomes-rich (Exo) EV subpopulation and GPC1 membrane protein (mProtein) expression in the microvesicles-rich (MV) EV subpopulation, particularly the tumor associated microvesicles (tMV), served as a viable biomarker for PDAC. A combined analysis effectively discriminated early-stage PDAC patients from benign pancreatic diseases and healthy donors in sizable clinical from multiple hospitals. Furthermore, among late-stage PDAC patients undergoing chemotherapy, lower GPC1 tMV-mProtein and Exo-mRNA expression before treatment correlated significantly with prolonged overall survival. These findings underscore the potential of vesicular GPC1 expression for early PDAC screenings and chemotherapy prognosis.


Assuntos
Carcinoma Ductal Pancreático , Vesículas Extracelulares , Neoplasias Pancreáticas , Humanos , Biomarcadores Tumorais/genética , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética , Vesículas Extracelulares/metabolismo , Glipicanas/genética , Glipicanas/metabolismo , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Prognóstico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
J Extracell Vesicles ; 12(11): e12369, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37908159

RESUMO

The molecular heterogeneity of extracellular vesicles (EVs) and the co-isolation of physically similar particles, such as lipoproteins (LPs), confounds and limits the sensitivity of EV bulk biomarker characterization. Herein, we present a single-EV and particle (siEVP) protein and RNA assay (siEVP PRA) to simultaneously detect mRNAs, miRNAs, and proteins in subpopulations of EVs and LPs. The siEVP PRA immobilizes and sorts particles via positive immunoselection onto micropatterns and focuses biomolecular signals in situ. By detecting EVPs at a single-particle resolution, the siEVP PRA outperformed the sensitivities of bulk-analysis benchmark assays for RNA and protein. To assess the specificity of RNA detection in complex biofluids, EVs from various glioma cell lines were processed with small RNA sequencing, whereby two mRNAs and two miRNAs associated with glioblastoma multiforme (GBM) were chosen for cross-validation. Despite the presence of single-EV-LP co-isolates in serum, the siEVP PRA detected GBM-associated vesicular RNA profiles in GBM patient siEVPs. The siEVP PRA effectively examines intravesicular, intervesicular, and interparticle heterogeneity with diagnostic promise.


Assuntos
Vesículas Extracelulares , Glioblastoma , MicroRNAs , Humanos , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Lipopolissacarídeos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro , Lipoproteínas , Glioblastoma/diagnóstico , Glioblastoma/genética
4.
Adv Sci (Weinh) ; 10(33): e2302622, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37847907

RESUMO

Regenerative medicine in tissue engineering often relies on stem cells and specific growth factors at a supraphysiological dose. These approaches are costly and may cause severe side effects. Herein, therapeutic small extracellular vesicles (t-sEVs) endogenously loaded with a cocktail of human vascular endothelial growth factor A (VEGF-A) and human bone morphogenetic protein 2 (BMP-2) mRNAs within a customized injectable PEGylated poly (glycerol sebacate) acrylate (PEGS-A) hydrogel for bone regeneration in rats with challenging femur critical-size defects are introduced. Abundant t-sEVs are produced by a facile cellular nanoelectroporation system based on a commercially available track-etched membrane (TM-nanoEP) to deliver plasmid DNAs to human adipose-derived mesenchymal stem cells (hAdMSCs). Upregulated microRNAs associated with the therapeutic mRNAs are enriched in t-sEVs for enhanced angiogenic-osteogenic regeneration. Localized and controlled release of t-sEVs within the PEGS-A hydrogel leads to the retention of therapeutics in the defect site for highly efficient bone regeneration with minimal low accumulation in other organs.


Assuntos
Osteogênese , Fator A de Crescimento do Endotélio Vascular , Ratos , Humanos , Animais , RNA Mensageiro/genética , Regeneração Óssea/genética , Hidrogéis/farmacologia
5.
Methods Mol Biol ; 2679: 67-81, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37300609

RESUMO

Selectively capturing and releasing viable circulating tumor cells (CTCs) from the peripheral blood of cancer patients is advantageous for investigating the molecular hallmarks of metastasis and developing personalized therapeutics. CTC-based liquid biopsies are flourishing in the clinical setting, offering opportunities to track the real-time responses of patients during clinical trials and lending accessibility to cancers that are traditionally difficult to diagnose. However, CTCs are rare compared to the breadth of cells that reside in the circulatory network, which has encouraged the engineering of novel microfluidic devices. Current microfluidic technologies either extensively enrich CTCs but compromise cellular viability or sort viable CTCs at low efficiencies. Herein we present a procedure to fabricate and operate a microfluidic device capable of capturing CTCs at high efficiencies while ensuring high viability. The microvortex-inducing microfluidic device functionalized with nanointerfaces positively enriches CTCs via cancer-specific immunoaffinity, while a thermally responsive surface chemistry releases the captured cells by raising the temperature to 37 °C.


Assuntos
Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patologia , Separação Celular/métodos , Microfluídica , Linhagem Celular Tumoral
6.
J Extracell Vesicles ; 11(9): e12258, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36093740

RESUMO

Conventional PD-L1 immunohistochemical tissue biopsies only predict 20%-40% of non-small cell lung cancer (NSCLC) patients that will respond positively to anti-PD-1/PD-L1 immunotherapy. Herein, we present an immunogold biochip to quantify single extracellular vesicular RNA and protein (Au SERP) as a non-invasive alternative. With only 20 µl of purified serum, PD-1/PD-L1 proteins on the surface of extracellular vesicles (EVs) and EV PD-1/PD-L1 messenger RNA (mRNA) cargo were detected at a single-vesicle resolution and exceeded the sensitivities of their bulk-analysis conventional counterparts, ELISA and qRT-PCR, by 1000 times. By testing a cohort of 27 non-responding and 27 responding NSCLC patients, Au SERP indicated that the single-EV mRNA biomarkers surpass the single-EV protein biomarkers in predicting patient responses to immunotherapy. Dual single-EV PD-1/PD-L1 mRNA detection differentiated responders from non-responders with an accuracy of 72.2% and achieved an NSCLC diagnosis accuracy of 93.2%, suggesting the potential for Au SERP to provide enhanced immunotherapy predictions and cancer diagnoses within the clinical setting.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Vesículas Extracelulares , Neoplasias Pulmonares , Antígeno B7-H1/genética , Biomarcadores , Carcinoma Pulmonar de Células não Pequenas/genética , Vesículas Extracelulares/metabolismo , Humanos , Fatores Imunológicos/uso terapêutico , Imunoterapia , Neoplasias Pulmonares/genética , RNA/uso terapêutico , RNA Mensageiro/metabolismo
7.
Lab Chip ; 22(13): 2502-2518, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35579189

RESUMO

Investigating cellular and vesicular heterogeneity in breast cancer remains a challenge, which encourages the development of controllable in vitro systems that mimic the tumor microenvironment. Although three-dimensional cell culture better recapitulates the heterogeneity observed in tumor growth and extracellular vesicle (EV) biogenesis, the physiological relevance is often contrasted with the control offered by two-dimensional cell culture. Therefore, to challenge this misconception we developed a novel microfluidic system harboring highly tunable three-dimensional EV microbioreactors (EVµBRs) to model micrometastatic EV release in breast cancer while capitalizing on the convenient, low-volume, and sterile interface provided by microfluidics. The diameter and cellular occupancy of the EVµBRs could be precisely tailored to various configurations, supporting the formation of breast cancer tumor spheroids. To immobilize the EVµBRs within a microchannel and facilitate EV extraction, oxygen inhibition in free-radical polymerization was repurposed to rapidly generate two-layer hydrodynamic traps in situ using a digital-micromirror device (DMD)-based ultraviolet (UV) projection system. Breast cancer tumor spheroid-derived EVs were harvested with as little as 20 µL from the microfluidic system and quantified by single-EV immunofluorescence for CD63 and CD81. Despite the low-volume extraction, differences in biomarker expression and coexpression of the tetraspanins on single EVs were observed. Furthermore, the EVµBRs were capable of recapitulating heterogeneity at a cellular and vesicular degree, indicating the utility and robustness of the microfluidic system to investigate physiologically relevant EVs in breast cancer and other disease models.


Assuntos
Neoplasias da Mama , Vesículas Extracelulares , Microgéis , Neoplasias da Mama/patologia , Técnicas de Cultura de Células , Vesículas Extracelulares/metabolismo , Feminino , Humanos , Microfluídica , Microambiente Tumoral
8.
Biomicrofluidics ; 14(1): 014104, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31933714

RESUMO

The applications of cell patterning are widespread due to the high-throughput testing and different resolutions offered by these platforms. Cell patterning has aided in deconvoluting in vivo experiments to better characterize cellular mechanisms and increase therapeutic output. Here, we present a technique for engineering an artificial surface via surface chemistry to form large-scale arrays of cells within a microchannel by employing microstamping. By changing the approach in surface chemistry, H1568 cells were patterned hydrodynamically using immunoaffinity, and neutrophils were patterned through self-assembly via chemotaxis. The high patterning efficiencies (93% for hydrodynamic patterning and 68% for self-assembled patterning) and the lack of secondary adhesion demonstrate the reproducibility of the platform. The interaction between H1568 and neutrophils was visualized and quantified to determine the capability of the platform to encourage cell-cell interaction. With the introduction of H1568 cells into the self-assembled patterning platform, a significant hindrance in the neutrophils' ability to swarm was observed, indicating the important roles of inflammatory mediators within the nonsmall cell lung cancer tumor microenvironment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA