Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Infect Immun ; 81(8): 2662-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23649090

RESUMO

Enterococcus faecalis is a highly stress resistant opportunistic pathogen. The intrinsic ruggedness of this bacterium is supposed to be the basis of its capacity to colonize the hostile environments of hospitals and to cause several kinds of infections. We show in this work that general resistance to very different environmental stresses depends on the ability of E. faecalis to maintain redox balance via lactate dehydrogenase (LDH). Furthermore, LDH-deficient mutants are less successful than the wild type at colonizing host organs in a murine model of systemic infection. Taken together, our results, as well as those previously published for Staphylococcus aureus (A. R. Richardson, S. J. Libby, and F. C. Fang, Science 319:1672-1676, 2008), identify LDH as an attractive drug target. These drugs may have additional applications, as in the fight against glycopeptide antibiotic-resistant bacteria and even cancer.


Assuntos
Enterococcus faecalis/metabolismo , Enterococcus faecalis/patogenicidade , L-Lactato Desidrogenase/metabolismo , Estresse Fisiológico/fisiologia , Animais , Proteínas de Bactérias/metabolismo , Camundongos , Oxirredução , Virulência
2.
J Mol Biol ; 398(4): 507-17, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20347848

RESUMO

Enterococcus faecalis EnpA (EF1473) is a 1721-residue predicted protein encoded by prophage 03 that displays similarity to the staphylolytic glycyl-glycyl endopeptidases lysostaphin and LytM. We purified a catalytically active fragment of the protein, EnpA(C), comprising residues 1374-1505 and showed that the recombinant polypeptide efficiently cleaved cross-linked muropeptides generated by muramidases, but was poorly active in intact sacculi. Analysis of the products of digestion of purified dimers by mass spectrometry indicated that EnpA(C) cleaves the D-Ala-L-Ala bond formed by the D,D-transpeptidase activity of penicillin-binding proteins in the last cross-linking step of peptidoglycan synthesis. Synthetic D was identified as the minimum substrate of EnpA(C) indicating that interaction of the enzyme with the donor peptide stem of cross-linked dimers is sufficient for its activity. Peptidoglycan was purified from various bacterial species and digested with mutanolysin and EnpA(C) to assess enzyme specificity. EnpA(C) did not cleave direct cross-links, but tolerated extensive variation in cross-bridges with respect to both their length (one to five residues) and their amino acid sequence. Recognition of the donor stem of cross-linked dimers could account for the substrate specificity of EnpA(C), which is significantly broader in comparison to endopeptidases belonging to the lysostaphin family.


Assuntos
Proteínas de Bactérias/metabolismo , Endopeptidases/metabolismo , Enterococcus faecalis/enzimologia , Sequência de Aminoácidos , Sequência de Carboidratos , Espectrometria de Massas , Dados de Sequência Molecular , Alinhamento de Sequência , Especificidade por Substrato
3.
Microbiology (Reading) ; 155(Pt 10): 3226-3237, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19608607

RESUMO

Guanosine penta- and tetraphosphate [(p)ppGpp] are two unusual nucleotides implied in the bacterial stringent response. In many pathogenic bacteria, mutants unable to synthesize these molecules lose their virulence. In Gram-positive bacteria such as Enterococcus faecalis, the synthesis and degradation of (p)ppGpp mainly depend on the activity of a bifunctional enzyme, encoded by the relA gene. By analysing DeltarelA and DeltarelQ (which encodes a protein harbouring a ppGpp synthetase activity) deletion mutants, we showed that RelA is by far the main system leading to (p)ppGpp production under our experimental conditions, and during the development of a stringent response induced by mupirocin. We also constructed a mutant (DeltarelAsp) in which a small part of the relA gene (about 0.7 kbp) encoding the carboxy-terminal domain of the RelA protein was deleted. Both relA mutants were more resistant than the wild-type strain to 0.3 % bile salts, 25 % ethanol and acid (pH 2.3) challenges. Interestingly, the DeltarelAsp mutant grew better than the two other strains in the presence of 1 mM H(2)O(2), but did not display increased tolerance when subjected to lethal doses of H(2)O(2) (45 mM). By contrast, the DeltarelA mutant was highly sensitive to 45 mM H(2)O(2) and displayed reduced growth in a medium containing 1 M NaCl. The two mutants also displayed contrasting virulence phenotypes towards larvae of the Greater Wax Moth infection model Galleria mellonella. Indeed, although the DeltarelA mutant did not display any phenotype, the DeltarelAsp mutant was more virulent than the wild-type strain. This virulent phenotype should stem from its increased ability to proliferate under oxidative environments.


Assuntos
Enterococcus faecalis/fisiologia , Ligases/fisiologia , Estresse Fisiológico , Ácidos/farmacologia , Adaptação Fisiológica , Animais , Antibacterianos/farmacologia , Ácidos e Sais Biliares/farmacologia , Enterococcus faecalis/patogenicidade , Etanol/farmacologia , Deleção de Genes , Infecções por Bactérias Gram-Positivas/microbiologia , Humanos , Peróxido de Hidrogênio/farmacologia , Lepidópteros/microbiologia , Ligases/genética , Testes de Sensibilidade Microbiana , Deleção de Sequência , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA