Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38798634

RESUMO

Acylaminoindazole-based inhibitors of CDKL2 were identified via analyses of cell-free binding and selectivity data. Compound 9 was selected as a CDKL2 chemical probe based on its potent inhibition of CDKL2 enzymatic activity, engagement of CDKL2 in cells, and excellent kinome-wide selectivity, especially when used in cells. Compound 16 was designed as a negative control to be used alongside compound 9 in experiments to interrogate CDKL2-mediated biology. A solved co-crystal structure of compound 9 bound to CDKL2 highlighted key interactions it makes within its ATP-binding site. Inhibition of downstream phosphorylation of EB2, a CDKL2 substrate, in rat primary neurons provided evidence that engagement of CDKL2 by compound 9 in cells resulted in inhibition of its activity. When used at relevant concentrations, compound 9 does not impact the viability of rat primary neurons or certain breast cancer cells nor elicit consistent changes in the expression of proteins involved in epithelial-mesenchymal transition.

2.
Methods Mol Biol ; 2783: 303-308, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478242

RESUMO

Breast cancer is an ongoing issue due to its high mortality rates. Obesity enhances the problems associated with breast cancer, meaning there must be a biological connection between them. This crosstalk may be the adipose-derived stem cell. If we can interrupt the communication between adipose-derived stromal/stem cells (ASCs) and breast cancer, we may be able to prevent cancer propagation. Specific kinase inhibition may allow us to downregulate signals, preventing ASC-mediated cancer growth. This chapter provides a critical method for screening a kinase inhibitor drug library for hits on ASCs.


Assuntos
Tecido Adiposo , Neoplasias da Mama , Humanos , Feminino , Adipócitos , Neoplasias da Mama/tratamento farmacológico , Células Estromais/fisiologia , Obesidade , Proliferação de Células
3.
Oncogene ; 43(11): 763-775, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38310162

RESUMO

Both breast cancer and obesity can regulate epigenetic changes or be regulated by epigenetic changes. Due to the well-established link between obesity and an increased risk of developing breast cancer, understanding how obesity-mediated epigenetic changes affect breast cancer pathogenesis is critical. Researchers have described how obesity and breast cancer modulate the epigenome individually and synergistically. In this review, the epigenetic alterations that occur in obesity, including DNA methylation, histone, and chromatin modification, accelerated epigenetic age, carcinogenesis, metastasis, and tumor microenvironment modulation, are discussed. Delineating the relationship between obesity and epigenetic regulation is vital to furthering our understanding of breast cancer pathogenesis.


Assuntos
Neoplasias da Mama , Epigênese Genética , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Metilação de DNA , Histonas/metabolismo , Obesidade/complicações , Obesidade/genética , Microambiente Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA