Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genome Med ; 12(1): 13, 2020 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-32000841

RESUMO

BACKGROUND: For the majority of rare clinical missense variants, pathogenicity status cannot currently be classified. Classical homocystinuria, characterized by elevated homocysteine in plasma and urine, is caused by variants in the cystathionine beta-synthase (CBS) gene, most of which are rare. With early detection, existing therapies are highly effective. METHODS: Damaging CBS variants can be detected based on their failure to restore growth in yeast cells lacking the yeast ortholog CYS4. This assay has only been applied reactively, after first observing a variant in patients. Using saturation codon-mutagenesis, en masse growth selection, and sequencing, we generated a comprehensive, proactive map of CBS missense variant function. RESULTS: Our CBS variant effect map far exceeds the performance of computational predictors of disease variants. Map scores correlated strongly with both disease severity (Spearman's ϱ = 0.9) and human clinical response to vitamin B6 (ϱ = 0.93). CONCLUSIONS: We demonstrate that highly multiplexed cell-based assays can yield proactive maps of variant function and patient response to therapy, even for rare variants not previously seen in the clinic.


Assuntos
Cistationina beta-Sintase/genética , Teste de Complementação Genética/métodos , Testes Genéticos/métodos , Homocistinúria/genética , Mutação de Sentido Incorreto , Cistationina beta-Sintase/metabolismo , Genótipo , Humanos , Fenótipo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética
2.
Hum Mutat ; 40(9): 1530-1545, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31301157

RESUMO

Accurate prediction of the impact of genomic variation on phenotype is a major goal of computational biology and an important contributor to personalized medicine. Computational predictions can lead to a better understanding of the mechanisms underlying genetic diseases, including cancer, but their adoption requires thorough and unbiased assessment. Cystathionine-beta-synthase (CBS) is an enzyme that catalyzes the first step of the transsulfuration pathway, from homocysteine to cystathionine, and in which variations are associated with human hyperhomocysteinemia and homocystinuria. We have created a computational challenge under the CAGI framework to evaluate how well different methods can predict the phenotypic effect(s) of CBS single amino acid substitutions using a blinded experimental data set. CAGI participants were asked to predict yeast growth based on the identity of the mutations. The performance of the methods was evaluated using several metrics. The CBS challenge highlighted the difficulty of predicting the phenotype of an ex vivo system in a model organism when classification models were trained on human disease data. We also discuss the variations in difficulty of prediction for known benign and deleterious variants, as well as identify methodological and experimental constraints with lessons to be learned for future challenges.


Assuntos
Substituição de Aminoácidos , Biologia Computacional/métodos , Cistationina beta-Sintase/genética , Cistationina/metabolismo , Cistationina beta-Sintase/metabolismo , Homocisteína/metabolismo , Humanos , Fenótipo , Medicina de Precisão
3.
Elife ; 62017 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-28346139

RESUMO

Certain mutations affecting central metabolism cause accumulation of the oncometabolite D-2-hydroxyglutarate which promotes progression of certain tumors. High levels of D-2-hydroxyglutarate inhibit the TET family of DNA demethylases and Jumonji family of histone demethylases and cause epigenetic changes that lead to altered gene expression. The link between inhibition of DNA demethylation and changes in expression is strong in some cancers, but not in others. To determine whether D-2-hydroxyglutarate can affect gene expression through inhibiting histone demethylases, orthologous mutations to those known to cause accumulation of D-2-hydroxyglutarate in tumors were generated in Saccharomyces cerevisiae, which has histone demethylases but not DNA methylases or demethylases. Accumulation of D-2-hydroxyglutarate caused inhibition of several histone demethylases. Inhibition of two of the demethylases that act specifically on histone H3K36me2,3 led to enhanced gene silencing. These observations pinpointed a new mechanism by which this oncometabolite can alter gene expression, perhaps repressing critical inhibitors of proliferation.


Assuntos
Inativação Gênica , Glutaratos/metabolismo , Histona Desmetilases/antagonistas & inibidores , Histonas/metabolismo , Saccharomyces cerevisiae/enzimologia , Processamento de Proteína Pós-Traducional , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Science ; 355(6330): 1184-1187, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28302853

RESUMO

In yeast, heterochromatin silencing is reported to decline in aging mother cells, causing sterility in old cells. This process is thought to reflect a decrease in the activity of the NAD+ (oxidized nicotinamide adenine dinucleotide)-dependent deacetylase Sir2. We tested whether Sir2 becomes nonfunctional gradually or precipitously during aging. Unexpectedly, silencing of the heterochromatic HML and HMR loci was not lost during aging. Old cells could initiate a mating response; however, they were less sensitive to mating pheromone than were young cells because of age-dependent aggregation of Whi3, an RNA-binding protein controlling S-phase entry. Removing the polyglutamine domain of Whi3 restored the pheromone sensitivity of old cells. We propose that aging phenotypes previously attributed to loss of heterochromatin silencing are instead caused by aggregation of the Whi3 cell cycle regulator.


Assuntos
Senescência Celular/fisiologia , Regulação Fúngica da Expressão Gênica , Inativação Gênica , Genes Fúngicos Tipo Acasalamento , Heterocromatina/metabolismo , Agregados Proteicos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Senescência Celular/genética , Peptídeos/genética , Peptídeos/fisiologia , Domínios Proteicos/genética , Domínios Proteicos/fisiologia , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Pontos de Checagem da Fase S do Ciclo Celular , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Sirtuína 2/metabolismo
5.
Annu Rev Cell Dev Biol ; 31: 473-496, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26359776

RESUMO

Epigenetic mechanisms by which cells inherit information are, to a large extent, enabled by DNA methylation and posttranslational modifications of histone proteins. These modifications operate both to influence the structure of chromatin per se and to serve as recognition elements for proteins with motifs dedicated to binding particular modifications. Each of these modifications results from an enzyme that consumes one of several important metabolites during catalysis. Likewise, the removal of these marks often results in the consumption of a different metabolite. Therefore, these so-called epigenetic marks have the capacity to integrate the expression state of chromatin with the metabolic state of the cell. This review focuses on the central roles played by acetyl-CoA, S-adenosyl methionine, NAD(+), and a growing list of other acyl-CoA derivatives in epigenetic processes. We also review how metabolites that accumulate as a result of oncogenic mutations are thought to subvert the epigenetic program.


Assuntos
Epigênese Genética/genética , Epigênese Genética/fisiologia , Acetilcoenzima A/genética , Animais , Cromatina/fisiologia , Metilação de DNA/genética , Metilação de DNA/fisiologia , Humanos , NAD/genética , Processamento de Proteína Pós-Traducional/genética , Processamento de Proteína Pós-Traducional/fisiologia , S-Adenosilmetionina/genética
6.
Genetics ; 199(1): 105-16, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25406467

RESUMO

The extent of chromatin compaction is a fundamental driver of nuclear metabolism . Yta7 is a chromatin-associated AAA-ATPase, the human ortholog of which, ANCCA/ATAD2 transcriptionally activates pathways of malignancy in a broad range of cancers. Yta7 directly binds histone H3, and bulk chromatin exhibits increased nucleosomal density in yta7Δ mutants. The suppression of yta7Δ mutant growth and transcriptional phenotypes in budding yeast by decreased dosage of histones H3 and H4 indicates the acute sensitivity of cells to deviations in nucleosome spacing. This study investigated the global changes in chromatin structure upon Yta7 loss or overexpression and determined which of these effects reflected direct Yta7 activity. Metagene analysis of Yta7's genome-wide localization indicated peak binding of Yta7 just downstream of the transcription start site. Cells lacking Yta7 exhibited increased nucleosome density within genes downstream of the +1 nucleosome, as defined by decreased internucleosomal distance, resulting in progressively 5'-shifted nucleosomes within the gene. In contrast, cells overexpressing Yta7 displayed profound 3'-shifts in nucleosome position and reduced nucleosome density within genes. Importantly, Yta7-bound regions were enriched for nucleosomal shifts, indicating that Yta7 acted locally to modulate nucleosome spacing. The phenotype of cells lacking both Yta7 and Rtt106, the histone H3/H4 chaperone, indicated that Yta7 functions in both Rtt106-dependent and Rtt106-independent ways to modulate nucleosome spacing within genes. This study suggested that Yta7 affected nucleosome density throughout the gene by both blocking Rtt106 from entering the gene, as shown previously at HTA1, and facilitating the loss of nucleosomes from the 5'-end.


Assuntos
Proteínas Cromossômicas não Histona/genética , Nucleossomos/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas Cromossômicas não Histona/metabolismo , Sequência Conservada , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Mol Biol Cell ; 25(10): 1653-65, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24648496

RESUMO

In Saccharomyces cerevisiae, transcription of the MET regulon, which encodes the proteins involved in the synthesis of the sulfur-containing amino acids methionine and cysteine, is repressed by the presence of either methionine or cysteine in the environment. This repression is accomplished by ubiquitination of the transcription factor Met4, which is carried out by the SCF(Met30) E3 ubiquitin ligase. Mutants defective in MET regulon repression reveal that loss of Cho2, which is required for the methylation of phosphatidylethanolamine to produce phosphatidylcholine, leads to induction of the MET regulon. This induction is due to reduced cysteine synthesis caused by the Cho2 defects, uncovering an important link between phospholipid synthesis and cysteine synthesis. Antimorphic mutants in S-adenosyl-methionine (SAM) synthetase genes also induce the MET regulon. This effect is due, at least in part, to SAM deficiency controlling the MET regulon independently of SAM's contribution to cysteine synthesis. Finally, the Met30 protein is found in two distinct forms whose relative abundance is controlled by the availability of sulfur-containing amino acids. This modification could be involved in the nutritional control of SCF(Met30) activity toward Met4.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Cisteína/biossíntese , Proteínas F-Box/metabolismo , Metionina/biossíntese , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteínas F-Box/genética , Regulação Fúngica da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Metionina Adenosiltransferase/genética , Metilação , Fosfatidilcolinas/biossíntese , Fosfatidiletanolamina N-Metiltransferase/genética , Fosfatidiletanolaminas/metabolismo , S-Adenosilmetionina/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Complexos Ubiquitina-Proteína Ligase/genética , Ubiquitinação
8.
Genetics ; 195(3): 831-44, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23979574

RESUMO

The vitamin folate is required for methionine homeostasis in all organisms. In addition to its role in protein synthesis, methionine is the precursor to S-adenosyl-methionine (SAM), which is used in myriad cellular methylation reactions, including all histone methylation reactions. Here, we demonstrate that folate and methionine deficiency led to reduced methylation of lysine 4 of histone H3 (H3K4) in Saccharomyces cerevisiae. The effect of nutritional deficiency on H3K79 methylation was less pronounced, but was exacerbated in S. cerevisiae carrying a hypomorphic allele of Dot1, the enzyme responsible for H3K79 methylation. This result suggested a hierarchy of epigenetic modifications in terms of their susceptibility to nutritional limitations. Folate deficiency caused changes in gene transcription that mirrored the effect of complete loss of H3K4 methylation. Histone methylation was also found to respond to nutritional deficiency in the fission yeast Schizosaccharomyces pombe and in human cells in culture.


Assuntos
Epigênese Genética , Ácido Fólico/metabolismo , Metionina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Feminino , Antagonistas do Ácido Fólico/efeitos adversos , Antagonistas do Ácido Fólico/uso terapêutico , Deficiência de Ácido Fólico/complicações , Deficiência de Ácido Fólico/genética , Deficiência de Ácido Fólico/metabolismo , Histonas/química , Histonas/genética , Histonas/metabolismo , Humanos , Recém-Nascido , Células K562 , Metilação , Defeitos do Tubo Neural/etiologia , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/metabolismo , Gravidez , S-Adenosilmetionina/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Especificidade da Espécie
9.
G3 (Bethesda) ; 3(10): 1619-28, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-23934999

RESUMO

Any two individuals differ from each other by an average of 3 million single-nucleotide polymorphisms. Some polymorphisms have a functional impact on cofactor-using enzymes and therefore represent points of possible therapeutic intervention through elevated-cofactor remediation. Because most known disease-causing mutations affect protein stability, we evaluated how the in vivo impact caused by single amino acid substitutions in a prototypical enzyme of this type compared with physical characteristics of the variant enzymes in vitro. We focused on cystathionine ß-synthase (CBS) because of its clinical relevance in homocysteine metabolism and because some variants of the enzyme are clinically responsive to increased levels of its B6 cofactor. Single amino-acid substitutions throughout the CBS protein caused reduced function in vivo, and a subset of these altered sensitivity to limiting B6-cofactor. Some of these B6-sensitive substitutions also had altered sensitivity to limiting heme, another CBS cofactor. Limiting heme resulted in reduced incorporation of heme into these variants, and subsequently increased protease sensitivity of the enzyme in vitro. We hypothesize that these alleles caused a modest, yet significant, destabilization of the native state of the protein, and that the functional impact of the amino acid substitutions caused by these alleles can be influenced by cofactor(s) even when the affected amino acid is distant from the cofactor binding site.


Assuntos
Substituição de Aminoácidos , Coenzimas/metabolismo , Cistationina beta-Sintase/metabolismo , Alelos , Sequência de Aminoácidos , Cistationina beta-Sintase/química , Cistationina beta-Sintase/genética , Estabilidade Enzimática , Heme/química , Heme/metabolismo , Humanos , Dados de Sequência Molecular , Ligação Proteica , Saccharomyces cerevisiae/enzimologia , Vitamina B 6/metabolismo
10.
Genetics ; 190(4): 1309-23, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22267502

RESUMO

Cystathionine-ß-synthase (CBS) deficiency is a human genetic disease causing homocystinuria, thrombosis, mental retardation, and a suite of other devastating manifestations. Early detection coupled with dietary modification greatly reduces pathology, but the response to treatment differs with the allele of CBS. A better understanding of the relationship between allelic variants and protein function will improve both diagnosis and treatment. To this end, we tested the function of 84 CBS alleles previously sequenced from patients with homocystinuria by ortholog replacement in Saccharomyces cerevisiae. Within this clinically associated set, 15% of variant alleles were indistinguishable from the predominant CBS allele in function, suggesting enzymatic activity was retained. An additional 37% of the alleles were partially functional or could be rescued by cofactor supplementation in the growth medium. This large class included alleles rescued by elevated levels of the cofactor vitamin B6, but also alleles rescued by elevated heme, a second CBS cofactor. Measurement of the metabolite levels in CBS-substituted yeast grown with different B6 levels using LC-MS revealed changes in metabolism that propagated beyond the substrate and product of CBS. Production of the critical antioxidant glutathione through the CBS pathway was greatly decreased when CBS function was restricted through genetic, cofactor, or substrate restriction, a metabolic consequence with implications for treatment.


Assuntos
Alelos , Cistationina beta-Sintase/metabolismo , Metaboloma , Cromatografia Líquida/métodos , Coenzimas/metabolismo , Meios de Cultura/metabolismo , Cistationina beta-Sintase/genética , Ativação Enzimática , Teste de Complementação Genética , Genoma Humano , Glutationa/metabolismo , Heme/metabolismo , Homocistinúria/genética , Humanos , Immunoblotting , Mutação , Fenótipo , Plasmídeos/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Vitamina B 6/metabolismo , Vitamina B 6/farmacologia
11.
Proc Natl Acad Sci U S A ; 108(49): E1302-11, 2011 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-22074782

RESUMO

Yta7 is a highly conserved bromodomain-containing protein with AAA-ATPase homology originally implicated in heterochromatin boundary function in Saccharomyces cerevisiae. Although increased activity of the human ortholog has been implicated in malignant breast tumors, Yta7's precise mode of action is unknown. Transcriptional analysis in yeast cells revealed a role for Yta7 and its ATPase function in gene induction, including galactose- and sporulation-induced transcription. This requirement was direct and activating, because Yta7 associated with the GAL gene cluster only upon transcriptional induction. Suggestive of a role in transcriptional elongation, Yta7 localized to the ORFs of highly transcribed genes. Intriguingly, the yta7Δ mutant's transcriptional defects were partially suppressed by decreased dosage of histones H3 and H4. Consistent with this suppression, cells lacking Yta7 exhibited both increased levels of chromatin-incorporated histone H3 and decreased nucleosome spacing. Importantly, this modulation of H3 levels occurred independently of changes in H3 transcript level. Because Yta7 binds histone H3 in vitro, these results suggested a direct role for Yta7 in H3 eviction or degradation. Further, local loss of Yta7 activity at a long inducible gene resulted in accumulation of H3 at the 3' end upon transcriptional activation, implying Yta7 may regulate H3 cotranscriptionally.


Assuntos
Proteínas Cromossômicas não Histona/genética , Nucleossomos/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Cromatina/genética , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Proteínas Cromossômicas não Histona/metabolismo , Eletroforese em Gel de Poliacrilamida , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Histonas/genética , Histonas/metabolismo , Humanos , Mutação , Nucleossomos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Biochemistry ; 47(27): 7274-83, 2008 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-18549241

RESUMO

The pathogenic fungus Histoplasma capsulatum requires iron for its survival during macrophage infection. Because iron is toxic at high levels, iron acquisition in pathogenic organisms, including H. capsulatum, is a highly regulated process. In response to excess iron, H. capsulatum represses transcription of genes involved in iron uptake. We report here that SRE1, a gene encoding a GATA-type protein, bound to promoter sequences of genes involved in siderophore biosynthesis. Sre1 had sequence similarity to the fungal negative regulators of siderophore biosynthesis. Expression of SRE1 was reduced under iron-starving conditions, underscoring its role as a negative regulator of genes involved in iron uptake. Sre1p specifically bound DNA containing the 5'-(G/A)ATC(T/A)GATAA-3' sequence, and that binding was both iron- and zinc-dependent. Metal analysis indicated that a substoichiometric amount of iron, predominately Fe (3+), was bound to the purified protein. About 0.5-1 equiv of Fe (3+) per monomer was necessary for full DNA-binding activity. Mutations in the conserved cysteine residues in the cysteine-rich region led to a decrease in bound iron. The loss of iron led to a approximately 2.5-fold decrease in DNA-binding affinity, indicating that iron was directly involved in SRE1 regulation of iron-uptake genes.


Assuntos
DNA Fúngico/metabolismo , Fatores de Transcrição GATA/metabolismo , Genes Fúngicos , Histoplasma/efeitos dos fármacos , Histoplasma/genética , Ferro/metabolismo , Ferro/farmacologia , Sequência de Aminoácidos , Sequência de Bases , Cromatografia em Gel , Sequência Consenso , Cisteína/metabolismo , DNA Fúngico/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/metabolismo , Fatores de Transcrição GATA/química , Fatores de Transcrição GATA/genética , Fatores de Transcrição GATA/isolamento & purificação , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Histoplasma/metabolismo , Dados de Sequência Molecular , Ligação Proteica/efeitos dos fármacos , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Zinco/metabolismo , Dedos de Zinco
13.
PLoS Pathog ; 4(4): e1000044, 2008 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-18404210

RESUMO

The macrophage is the primary host cell for the fungal pathogen Histoplasma capsulatum during mammalian infections, yet little is known about fungal genes required for intracellular replication in the host. Since the ability to scavenge iron from the host is important for the virulence of most pathogens, we investigated the role of iron acquisition in H. capsulatum pathogenesis. H. capsulatum acquires iron through the action of ferric reductases and the production of siderophores, but the genes responsible for these activities and their role in virulence have not been determined. We identified a discrete set of co-regulated genes whose transcription is induced under low iron conditions. These genes all appeared to be involved in the synthesis, secretion, and utilization of siderophores. Surprisingly, the majority of these transcriptionally co-regulated genes were found clustered adjacent to each other in the genome of the three sequenced strains of H. capsulatum, suggesting that their proximity might foster coordinate gene regulation. Additionally, we identified a consensus sequence in the promoters of all of these genes that may contribute to iron-regulated gene expression. The gene set included L-ornithine monooxygenase (SID1), the enzyme that catalyzes the first committed step in siderophore production in other fungi. Disruption of SID1 by allelic replacement resulted in poor growth under low iron conditions, as well as a loss of siderophore production. Strains deficient in SID1 showed a significant growth defect in murine bone-marrow-derived macrophages and attenuation in the mouse model of infection. These data indicated that H. capsulatum utilizes siderophores in addition to other iron acquisition mechanisms for optimal growth during infection.


Assuntos
Proteínas Fúngicas/metabolismo , Genes Fúngicos , Histoplasma/enzimologia , Histoplasma/patogenicidade , Interações Hospedeiro-Patógeno , Ferro/metabolismo , Proteínas Quinases/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , FMN Redutase/metabolismo , Feminino , Compostos Férricos/metabolismo , Compostos Férricos/farmacologia , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Genoma , Histoplasma/genética , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Quinases/genética , Sideróforos/genética , Sideróforos/metabolismo , Transformação Genética
14.
PLoS Genet ; 3(3): e39, 2007 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-17352537

RESUMO

The human ABCB1 (MDR1)-encoded multidrug transporter P-glycoprotein (P-gp) plays a major role in disposition and efficacy of a broad range of drugs including anticancer agents. ABCB1 polymorphisms could therefore determine interindividual variability in resistance to these drugs. To test this hypothesis we developed a Saccharomyces-based assay for evaluating the functional significance of ABCB1 polymorphisms. The P-gp reference and nine variants carrying amino-acid-altering single nucleotide polymorphisms (SNPs) were tested on medium containing daunorubicin, doxorubicin, valinomycin, or actinomycin D, revealing SNPs that increased (M89T, L662R, R669C, and S1141T) or decreased (W1108R) drug resistance. The R669C allele's highly elevated resistance was compromised when in combination with W1108R. Protein level or subcellular location of each variant did not account for the observed phenotypes. The relative resistance profile of the variants differed with drug substrates. This study established a robust new methodology for identification of function-altering polymorphisms in human multidrug transporter genes, identified polymorphisms affecting P-gp function, and provided a step toward genotype-determined dosing of chemotherapeutics.


Assuntos
Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Saccharomyces cerevisiae/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Antineoplásicos/farmacologia , Sequência Conservada , Daunorrubicina/farmacologia , Doxorrubicina/farmacologia , Farmacorresistência Fúngica/efeitos dos fármacos , Evolução Molecular , Teste de Complementação Genética , Haplótipos , Humanos , Proteínas Mutantes/metabolismo , Transportadores de Ânions Orgânicos/química , Estrutura Secundária de Proteína , Transporte Proteico/efeitos dos fármacos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo , Especificidade por Substrato/efeitos dos fármacos
15.
Mol Biol Cell ; 17(1): 539-48, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16267268

RESUMO

RTT107 (ESC4, YHR154W) encodes a BRCA1 C-terminal-domain protein that is important for recovery from DNA damage during S phase. Rtt107 is a substrate of the checkpoint protein kinase Mec1, although the mechanism by which Rtt107 is targeted by Mec1 after checkpoint activation is currently unclear. Slx4, a component of the Slx1-Slx4 structure-specific nuclease, formed a complex with Rtt107. Deletion of SLX4 conferred many of the same DNA-repair defects observed in rtt107delta, including DNA damage sensitivity, prolonged DNA damage checkpoint activation, and increased spontaneous DNA damage. These phenotypes were not shared by the Slx4 binding partner Slx1, suggesting that the functions of the Slx4 and Slx1 proteins in the DNA damage response were not identical. Of particular interest, Slx4, but not Slx1, was required for phosphorylation of Rtt107 by Mec1 in vivo, indicating that Slx4 was a mediator of DNA damage-dependent phosphorylation of the checkpoint effector Rtt107. We propose that Slx4 has roles in the DNA damage response that are distinct from the function of Slx1-Slx4 in maintaining rDNA structure and that Slx4-dependent phosphorylation of Rtt107 by Mec1 is critical for replication restart after alkylation damage.


Assuntos
Ciclo Celular/fisiologia , Dano ao DNA , DNA Fúngico/genética , Endodesoxirribonucleases/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Farmacorresistência Fúngica , Endodesoxirribonucleases/genética , Peptídeos e Proteínas de Sinalização Intracelular , Metanossulfonato de Metila/farmacologia , Proteínas Nucleares/genética , Fosforilação/efeitos dos fármacos , Ligação Proteica , Proteínas Serina-Treonina Quinases , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
16.
PLoS Genet ; 1(6): e77, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16362078

RESUMO

Sirtuins are a family of phylogenetically conserved nicotinamide adenine dinucleotide-dependent deacetylases that have a firmly established role in aging. Using a simple Saccharomyces cerevisiae yeast heterochromatic derepression assay, we tested a number of environmental chemicals to address the possibility that humans are exposed to sirtuin inhibitors. Here we show that dihydrocoumarin (DHC), a compound found in Melilotus officinalis (sweet clover) that is commonly added to food and cosmetics, disrupted heterochromatic silencing and inhibited yeast Sir2p as well as human SIRT1 deacetylase activity. DHC exposure in the human TK6 lymphoblastoid cell line also caused concentration-dependent increases in p53 acetylation and cytotoxicity. Flow cytometric analysis to detect annexin V binding to phosphatidylserine demonstrated that DHC increased apoptosis more than 3-fold over controls. Thus, DHC inhibits both yeast Sir2p and human SIRT1 deacetylases and increases p53 acetylation and apoptosis, a phenotype associated with senescence and aging. These findings demonstrate that humans are potentially exposed to epigenetic toxicants that inhibit sirtuin deacetylases.


Assuntos
Cumarínicos/farmacologia , Epigênese Genética , Aromatizantes/farmacologia , Inativação Gênica , Sirtuínas/antagonistas & inibidores , Envelhecimento , Apoptose , Linhagem Celular Tumoral , Senescência Celular , Proteínas Fúngicas/química , Inibidores de Histona Desacetilases , Histona Desacetilases/genética , Humanos , Fenótipo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Sirtuína 1 , Sirtuína 2 , Sirtuínas/genética , Proteína Supressora de Tumor p53/metabolismo
17.
PLoS Biol ; 2(5): E131, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15045029

RESUMO

The conserved histone variant H2A.Z functions in euchromatin to antagonize the spread of heterochromatin. The mechanism by which histone H2A is replaced by H2A.Z in the nucleosome is unknown. We identified a complex containing 13 different polypeptides associated with a soluble pool of H2A.Z in Saccharomyces cerevisiae. This complex was designated SWR1-Com in reference to the Swr1p subunit, a Swi2/Snf2-paralog. Swr1p and six other subunits were found only in SWR1-Com, whereas six other subunits were also found in the NuA4 histone acetyltransferase and/or the Ino80 chromatin remodeling complex. H2A.Z and SWR1 were essential for viability of cells lacking the EAF1 component of NuA4, pointing to a close functional connection between these two complexes. Strikingly, chromatin immunoprecipitation analysis of cells lacking Swr1p, the presumed ATPase of the complex, revealed a profound defect in the deposition of H2A.Z at euchromatic regions that flank the silent mating type cassette HMR and at 12 other chromosomal sites tested. Consistent with a specialized role for Swr1p in H2A.Z deposition, the majority of the genome-wide transcriptional defects seen in swr1Delta cells were also found in htz1Delta cells. These studies revealed a novel role for a member of the ATP-dependent chromatin remodeling enzyme family in determining the region-specific histone subunit composition of chromatin in vivo and controlling the epigenetic state of chromatin. Metazoan orthologs of Swr1p (Drosophila Domino; human SRCAP and p400) may have analogous functions.


Assuntos
Adenosina Trifosfatases/fisiologia , Eucromatina/química , Regulação Fúngica da Expressão Gênica , Histonas/química , Nucleossomos/química , Proteínas de Saccharomyces cerevisiae/fisiologia , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/química , Animais , Sítios de Ligação , Núcleo Celular/metabolismo , Sobrevivência Celular , Cromatina/química , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/metabolismo , Drosophila , Epigênese Genética , Proteínas Fúngicas/química , Genoma Fúngico , Heterocromatina/química , Humanos , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Oligonucleotídeos/química , Peptídeos/química , Ligação Proteica , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
18.
Science ; 303(5659): 808-13, 2004 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-14764870

RESUMO

A genetic interaction network containing approximately 1000 genes and approximately 4000 interactions was mapped by crossing mutations in 132 different query genes into a set of approximately 4700 viable gene yeast deletion mutants and scoring the double mutant progeny for fitness defects. Network connectivity was predictive of function because interactions often occurred among functionally related genes, and similar patterns of interactions tended to identify components of the same pathway. The genetic network exhibited dense local neighborhoods; therefore, the position of a gene on a partially mapped network is predictive of other genetic interactions. Because digenic interactions are common in yeast, similar networks may underlie the complex genetics associated with inherited phenotypes in other organisms.


Assuntos
Genes Fúngicos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Biologia Computacional , Fibrose Cística/genética , Deleção de Genes , Genes Essenciais , Doenças Genéticas Inatas/genética , Genótipo , Humanos , Dados de Sequência Molecular , Herança Multifatorial , Mutação , Fenótipo , Polimorfismo Genético , Retinose Pigmentar/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA