Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 22(1): e3002462, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38289969

RESUMO

Mutations in the gene encoding Cu-Zn superoxide dismutase 1 (SOD1) cause a subset of familial amyotrophic lateral sclerosis (fALS) cases. A shared effect of these mutations is that SOD1, which is normally a stable dimer, dissociates into toxic monomers that seed toxic aggregates. Considerable research effort has been devoted to developing compounds that stabilize the dimer of fALS SOD1 variants, but unfortunately, this has not yet resulted in a treatment. We hypothesized that cyclic thiosulfinate cross-linkers, which selectively target a rare, 2 cysteine-containing motif, can stabilize fALS-causing SOD1 variants in vivo. We created a library of chemically diverse cyclic thiosulfinates and determined structure-cross-linking-activity relationships. A pre-lead compound, "S-XL6," was selected based upon its cross-linking rate and drug-like properties. Co-crystallographic structure clearly establishes the binding of S-XL6 at Cys 111 bridging the monomers and stabilizing the SOD1 dimer. Biophysical studies reveal that the degree of stabilization afforded by S-XL6 (up to 24°C) is unprecedented for fALS, and to our knowledge, for any protein target of any kinetic stabilizer. Gene silencing and protein degrading therapeutic approaches require careful dose titration to balance the benefit of diminished fALS SOD1 expression with the toxic loss-of-enzymatic function. We show that S-XL6 does not share this liability because it rescues the activity of fALS SOD1 variants. No pharmacological agent has been proven to bind to SOD1 in vivo. Here, using a fALS mouse model, we demonstrate oral bioavailability; rapid engagement of SOD1G93A by S-XL6 that increases SOD1G93A's in vivo half-life; and that S-XL6 crosses the blood-brain barrier. S-XL6 demonstrated a degree of selectivity by avoiding off-target binding to plasma proteins. Taken together, our results indicate that cyclic thiosulfinate-mediated SOD1 stabilization should receive further attention as a potential therapeutic approach for fALS.


Assuntos
Esclerose Lateral Amiotrófica , Animais , Camundongos , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Cisteína/genética , Mutação , Superóxido Dismutase/genética , Superóxido Dismutase/química , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética
2.
Biochemistry ; 59(44): 4238-4249, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33135413

RESUMO

The metalloenzyme acireductone dioxygenase (ARD) shows metal-dependent physical and enzymatic activities depending upon the metal bound in the active site. The Fe(II)-bound enzyme catalyzes the penultimate step of the methionine salvage pathway, converting 1,2-dihydroxy-5-(methylthio)pent-1-en-3-one (acireductone) into formate and the ketoacid precursor of methionine, 2-keto-4-thiomethyl-2-oxobutanoate, using O2 as the oxidant. If Ni(II) is bound, an off-pathway shunt occurs, producing 3-methylthiopropionate, formate, and carbon monoxide from the same acireductone substrate. The solution structure of the Fe(II)-bound human enzyme, HsARD, is described and compared with the structures of Ni-bound forms of the closely related mouse enzyme, MmARD. Potential rationales for the different reactivities of the two isoforms are discussed. The human enzyme has been found to regulate the activity of matrix metalloproteinase I (MMP-I), which is involved in tumor metastasis, by binding the cytoplasmic transmembrane tail peptide of MMP-I. Nuclear magnetic resonance titration of HsARD with the MMP-I tail peptide permits identification of the peptide binding site on HsARD, a cleft anterior to the metal binding site adjacent to a dynamic proline-rich loop.


Assuntos
Dioxigenases/química , Dioxigenases/metabolismo , Ferro/metabolismo , Metaloproteinase 1 da Matriz/química , Metaloproteinase 1 da Matriz/metabolismo , Domínio Catalítico , Humanos , Modelos Moleculares , Soluções
3.
Biochemistry ; 57(22): 3134-3145, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29630349

RESUMO

Cystathionine ß-synthase (CBS) is a key regulator of sulfur amino acid metabolism, taking homocysteine from the methionine cycle to the biosynthesis of cysteine via the trans-sulfuration pathway. CBS is also a predominant source of H2S biogenesis. Roles for CBS have been reported for neuronal death pursuant to cerebral ischemia, promoting ovarian tumor growth, and maintaining drug-resistant phenotype by controlling redox behavior and regulating mitochondrial bioenergetics. The trans-sulfuration pathway is well-conserved in eukaryotes, but the analogous enzymes have different enzymatic behavior in different organisms. CBSs from the higher organisms contain a heme in an N-terminal domain. Though the presence of the heme, whose functions in CBSs have yet to be elucidated, is biochemically interesting, it hampers UV-vis absorption spectroscopy investigations of pyridoxal 5'-phosphate (PLP) species. CBS from Saccharomyces cerevisiae (yCBS) naturally lacks the heme-containing N-terminal domain, which makes it an ideal model for spectroscopic studies of the enzymological reaction catalyzed and allows structural studies of the basic yCBS catalytic core (yCBS-cc). Here we present the crystal structure of yCBS-cc, solved to 1.5 Å. Crystal structures of yCBS-cc in complex with enzymatic reaction intermediates have been captured, providing a structural basis for residues involved in catalysis. Finally, the structure of the yCBS-cc cofactor complex generated by incubation with an inhibitor shows apparent off-pathway chemistry not normally seen with CBS.


Assuntos
Cistationina beta-Sintase/química , Cistationina beta-Sintase/fisiologia , Catálise , Cistationina beta-Sintase/metabolismo , Cisteína/biossíntese , Cisteína/química , Heme/metabolismo , Humanos , Cinética , Modelos Moleculares , Oxirredução , Fosfato de Piridoxal/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia
4.
Biochemistry ; 56(37): 4951-4961, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28816437

RESUMO

Potent mechanism-based inactivators can be rationally designed against pyridoxal 5'-phosphate (PLP)-dependent drug targets, such as ornithine aminotransferase (OAT) or γ-aminobutyric acid aminotransferase (GABA-AT). An important challenge, however, is the lack of selectivity toward other PLP-dependent, off-target enzymes, because of similarities in mechanisms of all PLP-dependent aminotransferase reactions. On the basis of complex crystal structures, we investigate the inactivation mechanism of OAT, a hepatocellular carcinoma target, by (1R,3S,4S)-3-amino-4-fluorocyclopentane-1-carboxylic acid (FCP), a known inactivator of GABA-AT. A crystal structure of OAT and FCP showed the formation of a ternary adduct. This adduct can be rationalized as occurring via an enamine mechanism of inactivation, similar to that reported for GABA-AT. However, the crystal structure of an off-target, PLP-dependent enzyme, aspartate aminotransferase (Asp-AT), in complex with FCP, along with the results of attempted inhibition assays, suggests that FCP is not an inactivator of Asp-AT, but rather an alternate substrate. Turnover of FCP by Asp-AT is also supported by high-resolution mass spectrometry. Amid existing difficulties in achieving selectivity of inactivation among a large number of PLP-dependent enzymes, the obtained results provide evidence that a desirable selectivity could be achieved, taking advantage of subtle structural and mechanistic differences between a drug-target enzyme and an off-target enzyme, despite their largely similar substrate binding sites and catalytic mechanisms.


Assuntos
4-Aminobutirato Transaminase/antagonistas & inibidores , Aspartato Aminotransferases/antagonistas & inibidores , Cicloleucina/análogos & derivados , Inibidores Enzimáticos/farmacologia , Modelos Moleculares , Ornitina-Oxo-Ácido Transaminase/antagonistas & inibidores , Fosfato de Piridoxal/metabolismo , 4-Aminobutirato Transaminase/química , 4-Aminobutirato Transaminase/metabolismo , Aspartato Aminotransferases/química , Aspartato Aminotransferases/genética , Aspartato Aminotransferases/metabolismo , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Cicloleucina/química , Cicloleucina/metabolismo , Cicloleucina/farmacologia , Bases de Dados de Compostos Químicos , Bases de Dados de Proteínas , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Ligantes , Conformação Molecular , Ornitina-Oxo-Ácido Transaminase/química , Ornitina-Oxo-Ácido Transaminase/genética , Ornitina-Oxo-Ácido Transaminase/metabolismo , Conformação Proteica , Fosfato de Piridoxal/química , Piridoxamina/química , Piridoxamina/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homologia Estrutural de Proteína , Especificidade por Substrato
5.
Chem Rev ; 117(15): 10474-10501, 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28731690

RESUMO

Acireductone dioxygenase (ARD) from the methionine salvage pathway (MSP) is a unique enzyme that exhibits dual chemistry determined solely by the identity of the divalent transition-metal ion (Fe2+ or Ni2+) in the active site. The Fe2+-containing isozyme catalyzes the on-pathway reaction using substrates 1,2-dihydroxy-3-keto-5-methylthiopent-1-ene (acireductone) and dioxygen to generate formate and the ketoacid precursor of methionine, 2-keto-4-methylthiobutyrate, whereas the Ni2+-containing isozyme catalyzes an off-pathway shunt with the same substrates, generating methylthiopropionate, carbon monoxide, and formate. The dual chemistry of ARD was originally discovered in the bacterium Klebsiella oxytoca, but it has recently been shown that mammalian ARD enzymes (mouse and human) are also capable of catalyzing metal-dependent dual chemistry in vitro. This is particularly interesting, since carbon monoxide, one of the products of off-pathway reaction, has been identified as an antiapoptotic molecule in mammals. In addition, several biochemical and genetic studies have indicated an inhibitory role of human ARD in cancer. This comprehensive review describes the biochemical and structural characterization of the ARD family, the proposed experimental and theoretical approaches to establishing mechanisms for the dual chemistry, insights into the mechanism based on comparison with structurally and functionally similar enzymes, and the applications of this research to the field of artificial metalloenzymes and synthetic biology.


Assuntos
Dioxigenases/química , Dioxigenases/metabolismo , Ferro/metabolismo , Enzimas Multifuncionais/química , Enzimas Multifuncionais/metabolismo , Níquel/metabolismo , Animais , Humanos , Klebsiella oxytoca/enzimologia , Modelos Moleculares , Estrutura Molecular
6.
Proc Natl Acad Sci U S A ; 113(34): 9587-92, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27482083

RESUMO

The aggregation of α-synuclein (aSyn) leading to the formation of Lewy bodies is the defining pathological hallmark of Parkinson's disease (PD). Rare familial PD-associated mutations in aSyn render it aggregation-prone; however, PD patients carrying wild type (WT) aSyn also have aggregated aSyn in Lewy bodies. The mechanisms by which WT aSyn aggregates are unclear. Here, we report that inflammation can play a role in causing the aggregation of WT aSyn. We show that activation of the inflammasome with known stimuli results in the aggregation of aSyn in a neuronal cell model of PD. The insoluble aggregates are enriched with truncated aSyn as found in Lewy bodies of the PD brain. Inhibition of the inflammasome enzyme caspase-1 by chemical inhibition or genetic knockdown with shRNA abated aSyn truncation. In vitro characterization confirmed that caspase-1 directly cleaves aSyn, generating a highly aggregation-prone species. The truncation-induced aggregation of aSyn is toxic to neuronal culture, and inhibition of caspase-1 by shRNA or a specific chemical inhibitor improved the survival of a neuronal PD cell model. This study provides a molecular link for the role of inflammation in aSyn aggregation, and perhaps in the pathogenesis of sporadic PD as well.


Assuntos
Caspase 1/genética , Inflamassomos/metabolismo , Corpos de Lewy/metabolismo , Neurônios/metabolismo , Agregados Proteicos/genética , alfa-Sinucleína/genética , Compostos de Alúmen/farmacologia , Caspase 1/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dipeptídeos/farmacologia , Regulação da Expressão Gênica , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Corpos de Lewy/efeitos dos fármacos , Corpos de Lewy/patologia , Lipopolissacarídeos/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Nigericina/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Vitamina K 3/farmacologia , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , para-Aminobenzoatos/farmacologia
7.
Protein Sci ; 24(5): 762-78, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25627867

RESUMO

A scoring method for the prediction of catalytically important residues in enzyme structures is presented and used to examine the participation of distal residues in enzyme catalysis. Scores are based on the Partial Order Optimum Likelihood (POOL) machine learning method, using computed electrostatic properties, surface geometric features, and information obtained from the phylogenetic tree as input features. Predictions of distal residue participation in catalysis are compared with experimental kinetics data from the literature on variants of the featured enzymes; some additional kinetics measurements are reported for variants of Pseudomonas putida nitrile hydratase (ppNH) and for Escherichia coli alkaline phosphatase (AP). The multilayer active sites of P. putida nitrile hydratase and of human phosphoglucose isomerase are predicted by the POOL log ZP scores, as is the single-layer active site of P. putida ketosteroid isomerase. The log ZP score cutoff utilized here results in over-prediction of distal residue involvement in E. coli alkaline phosphatase. While fewer experimental data points are available for P. putida mandelate racemase and for human carbonic anhydrase II, the POOL log ZP scores properly predict the previously reported participation of distal residues.


Assuntos
Anidrase Carbônica II/química , Enzimas/química , Glucose-6-Fosfato Isomerase/química , Conformação Proteica , Anidrase Carbônica II/genética , Catálise , Enzimas/genética , Escherichia coli/enzimologia , Glucose-6-Fosfato Isomerase/genética , Humanos , Aprendizado de Máquina , Filogenia , Pseudomonas putida/enzimologia , Eletricidade Estática , Propriedades de Superfície
8.
PLoS Pathog ; 10(5): e1004132, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24830429

RESUMO

Mycobacterium tuberculosis (Mtb) employs multiple strategies to evade host immune responses and persist within macrophages. We have previously shown that the cell envelope-associated Mtb serine hydrolase, Hip1, prevents robust macrophage activation and dampens host pro-inflammatory responses, allowing Mtb to delay immune detection and accelerate disease progression. We now provide key mechanistic insights into the molecular and biochemical basis of Hip1 function. We establish that Hip1 is a serine protease with activity against protein and peptide substrates. Further, we show that the Mtb GroEL2 protein is a direct substrate of Hip1 protease activity. Cleavage of GroEL2 is specifically inhibited by serine protease inhibitors. We mapped the cleavage site within the N-terminus of GroEL2 and confirmed that this site is required for proteolysis of GroEL2 during Mtb growth. Interestingly, we discovered that Hip1-mediated cleavage of GroEL2 converts the protein from a multimeric to a monomeric form. Moreover, ectopic expression of cleaved GroEL2 monomers into the hip1 mutant complemented the hyperinflammatory phenotype of the hip1 mutant and restored wild type levels of cytokine responses in infected macrophages. Our studies point to Hip1-dependent proteolysis as a novel regulatory mechanism that helps Mtb respond rapidly to changing host immune environments during infection. These findings position Hip1 as an attractive target for inhibition for developing immunomodulatory therapeutics against Mtb.


Assuntos
Proteínas de Bactérias/fisiologia , Chaperonina 60/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Mycobacterium tuberculosis/enzimologia , Serina Endopeptidases/fisiologia , Serina Proteases/fisiologia , Animais , Proteínas de Bactérias/metabolismo , Células Cultivadas , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Ativação de Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/imunologia , Ligação Proteica , Multimerização Proteica , Proteólise , Serina Endopeptidases/metabolismo , Serina Proteases/metabolismo
9.
Proteomics ; 14(10): 1152-7, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24634066

RESUMO

Bottom-up MS studies typically employ a reduction and alkylation step that eliminates a class of PTM, S-thiolation. Given that molecular oxygen can mediate S-thiolation from reduced thiols, which are abundant in the reducing intracellular milieu, we investigated the possibility that some S-thiolation modifications are artifacts of protein preparation. Cu/Zn-superoxide dismutase (SOD1) was chosen for this case study as it has a reactive surface cysteine residue, which is readily cysteinylated in vitro. The ability of oxygen to generate S-thiolation artifacts was tested by comparing purification of SOD1 from postmortem human cerebral cortex under aerobic and anaerobic conditions. S-thiolation was ∼50% higher in aerobically processed preparations, consistent with oxygen-dependent artifactual S-thiolation. The ability of endogenous small molecule disulfides (e.g. cystine) to participate in artifactual S-thiolation was tested by blocking reactive protein cysteine residues during anaerobic homogenization. A 50-fold reduction in S-thiolation occurred indicating that the majority of S-thiolation observed aerobically was artifact. Tissue-specific artifacts were explored by comparing brain- and blood-derived protein, with remarkably more artifacts observed in brain-derived SOD1. Given the potential for such artifacts, rules of thumb for sample preparation are provided. This study demonstrates that without taking extraordinary precaution, artifactual S-thiolation of highly reactive, surface-exposed, cysteine residues can result.


Assuntos
Cisteína/metabolismo , Espectrometria de Massas/métodos , Proteínas/análise , Proteínas/metabolismo , Proteômica/métodos , Animais , Artefatos , Córtex Cerebral/química , Cisteína/química , Dissulfetos/química , Dissulfetos/metabolismo , Humanos , Camundongos , Processamento de Proteína Pós-Traducional , Proteínas/química , Superóxido Dismutase/química
10.
Proc Natl Acad Sci U S A ; 111(1): 137-42, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24351929

RESUMO

Thiaminases, enzymes that cleave vitamin B1, are sporadically distributed among prokaryotes and eukaryotes. Thiaminase I enzymes catalyze the elimination of the thiazole ring moiety from thiamin through substitution of the methylene group with a nitrogenous base or sulfhydryl compound. In eukaryotic organisms, these enzymes are reported to have much higher molecular weights than their bacterial counterparts. A thiaminase I of the single-celled amoeboflagellate Naegleria gruberi is the only eukaryotic thiaminase I to have been cloned, sequenced, and expressed. Here, we present the crystal structure of N. gruberi thiaminase I to a resolution of 2.8 Å, solved by isomorphous replacement and pseudo-two-wavelength multiwavelength anomalous diffraction and refined to an R factor of 0.231 (Rfree, 0.265). This structure was used to solve the structure of the enzyme in complex with 3-deazathiamin, a noncleavable thiamin analog and enzyme inhibitor (2.7 Å; R, 0.233; Rfree, 0.267). These structures define the mode of thiamin binding to this class of thiaminases and indicate the involvement of Asp272 as the catalytic base. This enzyme is able to use thiamin as a substrate and is active with amines such as aniline and veratrylamine as well as sulfhydryl compounds such as l-cysteine and ß-mercaptoethanol as cosubstrates. Despite significant differences in polypeptide sequence and length, we have shown that the N. gruberi thiaminase I is homologous in structure and activity to a previously characterized bacterial thiaminase I.


Assuntos
Hidrolases/química , Naegleria/enzimologia , Catálise , Domínio Catalítico , Cristalografia por Raios X , Escherichia coli/metabolismo , Mercaptoetanol/química , Peptídeos/química , Ligação Proteica , Tiamina/química
11.
Biochemistry ; 52(36): 6145-50, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23919400

RESUMO

The metalloenzyme Cu/Zn-superoxide dismutase (SOD1) catalyzes the reduction of superoxide anions into molecular oxygen and hydrogen peroxide. Hydrogen peroxide can oxidize SOD1, resulting in aberrant protein conformational changes, disruption of SOD1 function, and DNA damage. Cells may have evolved mechanisms of regulation that prevent such oxidation. We observed that cysteinylation of cysteine 111 (Cys111) of SOD1 prevents oxidation by peroxide (DOI 10.1021/bi4006122 ). In this article, we characterize cysteinylated SOD1 using differential scanning fluorometry and X-ray crystallography. The stoichiometry of binding was one cysteine per SOD1 dimer, and there does not appear to be free volume for a second cysteine without disrupting the dimer interface. Much of the three-dimensional structure of SOD1 is unaffected by cysteinylation. However, local conformational changes are observed in the cysteinylated monomer that include changes in conformation of the electrostatic loop (loop VII; residues 133-144) and the dimer interface (loop VI; residues 102-115). In addition, our data shows how cysteinylation precludes oxidation of cysteine 111 and suggests possible cross-talk between the dimer interface and the electrostatic loop.


Assuntos
Cisteína/química , Superóxido Dismutase/metabolismo , Cristalografia por Raios X , Estabilidade Enzimática/efeitos dos fármacos , Fluorometria , Modelos Moleculares , Oxirredução , Conformação Proteica/efeitos dos fármacos , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Superóxido Dismutase-1
12.
Biochemistry ; 52(36): 6137-44, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23927036

RESUMO

Reactive oxygen species (ROS) are cytotoxic. To remove ROS, cells have developed ROS-specific defense mechanisms, including the enzyme Cu/Zn superoxide dismutase (SOD1), which catalyzes the disproportionation of superoxide anions into molecular oxygen and hydrogen peroxide. Although hydrogen peroxide is less reactive than superoxide, it is still capable of oxidizing, unfolding, and inactivating SOD1, at least in vitro. To explore the relevance of post-translational modification (PTM) of SOD1, including peroxide-related modifications, SOD1 was purified from postmortem human nervous tissue. As much as half of all purified SOD1 protein contained non-native post-translational modifications (PTMs), the most prevalent modifications being cysteinylation and peroxide-related oxidations. Many PTMs targeted a single reactive SOD1 cysteine, Cys111. An intriguing observation was that unlike native SOD1, cysteinylated SOD1 was not oxidized. To further characterize how cysteinylation may protect SOD1 from oxidation, cysteine-modified SOD1 was prepared in vitro and exposed to peroxide. Cysteinylation conferred nearly complete protection from peroxide-induced oxidation of SOD1. Moreover, SOD1 that has been cysteinylated and peroxide oxidized in vitro comprised a set of PTMs that bear a striking resemblance to the myriad of PTMs observed in SOD1 purified from human tissue.


Assuntos
Cisteína/metabolismo , Superóxido Dismutase/metabolismo , Sequência de Aminoácidos , Animais , Encéfalo/enzimologia , Humanos , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Camundongos , Oxirredução , Oxigênio/metabolismo , Processamento de Proteína Pós-Traducional , Medula Espinal/enzimologia , Superóxido Dismutase-1
13.
Biochemistry ; 52(9): 1603-10, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23387521

RESUMO

Autoinducer inactivator A (AiiA) is a metal-dependent N-acyl homoserine lactone hydrolase that displays broad substrate specificity but shows a preference for substrates with long N-acyl substitutions. Previously, crystal structures of AiiA in complex with the ring-opened product N-hexanoyl-l-homoserine revealed binding interactions near the metal center but did not identify a binding pocket for the N-acyl chains of longer substrates. Here we report the crystal structure of an AiiA mutant, F107W, determined in the presence and absence of N-decanoyl-l-homoserine. F107 is located in a hydrophobic cavity adjacent to the previously identified ligand binding pocket, and the F107W mutation results in the formation of an unexpected interaction with the ring-opened product. Notably, the structure reveals a previously unidentified hydrophobic binding pocket for the substrate's N-acyl chain. Two aromatic residues, F64 and F68, form a hydrophobic clamp, centered around the seventh carbon in the product-bound structure's decanoyl chain, making an interaction that would also be available for longer substrates, but not for shorter substrates. Steady-state kinetics using substrates of various lengths with AiiA bearing mutations at the hydrophobic clamp, including insertion of a redox-sensitive cysteine pair, confirms the importance of this hydrophobic feature for substrate preference. Identifying the specificity determinants of AiiA will aid the development of more selective quorum-quenching enzymes as tools and as potential therapeutics.


Assuntos
Amidoidrolases/química , Amidoidrolases/metabolismo , Bacillus thuringiensis/enzimologia , Homosserina/análogos & derivados , Amidoidrolases/genética , Bacillus thuringiensis/química , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Cristalografia por Raios X , Homosserina/metabolismo , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Fenilalanina/química , Fenilalanina/genética , Fenilalanina/metabolismo , Mutação Puntual , Conformação Proteica , Percepção de Quorum , Especificidade por Substrato
14.
Methods Mol Biol ; 896: 387-98, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22821539

RESUMO

The small quantities of protein required for mass spectrometry (MS) make it a powerful tool to detect binding (protein-protein, protein-small molecule, etc.) of proteins that are difficult to express in large quantities, as is the case for many intrinsically disordered proteins. Chemical cross-linking, proteolysis, and MS analysis, combined, are a powerful tool for the identification of binding domains. Here, we present a traditional approach to determine protein-protein interaction binding sites using heavy water ((18)O) as a label. This technique is relatively inexpensive and can be performed on any mass spectrometer without specialized software.


Assuntos
Espectrometria de Massas/métodos , Proteínas/química , Proteínas/metabolismo , Cromatografia Líquida , Reagentes de Ligações Cruzadas/farmacologia , Eletroforese em Gel de Poliacrilamida , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Proteínas/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem
15.
Bioorg Med Chem Lett ; 22(12): 3900-4, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22617491

RESUMO

UCHL1 is a 223 amino acid member of the UCH family of deubiquitinating enzymes (DUBs), found abundantly and exclusively expressed in neurons and the testis in normal tissues. Two naturally occurring variants of UCHL1 are directly involved in Parkinson's disease (PD). Not only has UCHL1 been linked to PD, but it has oncogenic properties, having been found abnormally expressed in lung, pancreatic, and colorectal cancers. Although inhibitors of UCHL1 have been described previously the co-crystal structure of the enzyme bound to any inhibitor has not been reported. Herein, we report the X-ray structure of UCHL1 co-crystallized with a peptide-based fluoromethylketone inhibitor, Z-VAE(OMe)-FMK (VAEFMK) at 2.35 Å resolution. The co-crystal structure reveals that the inhibitor binds in the active-site cleft, irreversibly modifying the active-site cysteine; however, the catalytic histidine is still misaligned as seen in the native structure, suggesting that the inhibitor binds to an inactive form of the enzyme. Our structure also reveals that the inhibitor approaches the active-site cleft from the opposite side of the crossover loop as compared to the direction of approach of ubiquitin's C-terminal tail, thereby occupying the P1' (leaving group) site, a binding site perhaps used by the unknown C-terminal extension of ubiquitin in the actual in vivo substrate(s) of UCHL1. This structure provides a view of molecular contacts at the active-site cleft between the inhibitor and the enzyme as well as furnishing structural information needed to facilitate further design of inhibitors targeted to UCHL1 with high selectivity and potency.


Assuntos
Clorometilcetonas de Aminoácidos/química , Oligopeptídeos/química , Ubiquitina Tiolesterase/química , Animais , Domínio Catalítico , Cristalização , Cristalografia por Raios X , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Especificidade por Substrato , Ubiquitina/química
16.
Biochemistry ; 50(43): 9283-95, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21970785

RESUMO

Understanding the catalytic efficiency and specificity of enzymes is a fundamental question of major practical and conceptual importance in biochemistry. Although progress in biochemical and structural studies has enriched our knowledge of enzymes, the role in enzyme catalysis of residues that are not nearest neighbors of the reacting substrate molecule is largely unexplored experimentally. Here computational active site predictors, THEMATICS and POOL, were employed to identify functionally important residues that are not in direct contact with the reacting substrate molecule. These predictions then guided experiments to explore the active sites of two isomerases, Pseudomonas putida ketosteroid isomerase (KSI) and human phosphoglucose isomerase (PGI), as prototypes for very different types of predicted active sites. Both KSI and PGI are members of EC 5.3 and catalyze similar reactions, but they represent significantly different degrees of remote residue participation, as predicted by THEMATICS and POOL. For KSI, a compact active site of mostly first-shell residues is predicted, but for PGI, an extended active site in which residues in the first, second, and third layers around the reacting substrate are predicted. Predicted residues that have not been previously tested experimentally were investigated by site-directed mutagenesis and kinetic analysis. In human PGI, single-point mutations of the predicted second- and third-shell residues K362, H100, E495, D511, H396, and Q388 show significant decreases in catalytic activity relative to that of the wild type. The results of these experiments demonstrate that, as predicted, remote residues are very important in PGI catalysis but make only small contributions to catalysis in KSI.


Assuntos
Domínio Catalítico , Glucose-6-Fosfato Isomerase/química , Pseudomonas putida/enzimologia , Esteroide Isomerases/química , Cristalografia por Raios X , Glucose-6-Fosfato Isomerase/genética , Glucose-6-Fosfato Isomerase/metabolismo , Humanos , Cetosteroides/metabolismo , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Pseudomonas putida/química , Pseudomonas putida/genética , Esteroide Isomerases/genética , Esteroide Isomerases/metabolismo
17.
Cold Spring Harb Perspect Biol ; 3(10): a007500, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21844169

RESUMO

Parkinson's disease (PD) is a movement disorder that afflicts over one million in the U.S.; amyotrophic lateral sclerosis (ALS or Lou Gehrig's disease) is less prevalent but also has a high incidence. The two disorders sometimes present together, making a comparative study of interest. Both ALS and PD are neurodegenerative diseases, and are characterized by the presence of intraneuronal inclusions; however, different classes of neurons are affected and the primary protein in the inclusions differs between the diseases, and in some cases is different in distinct forms of the same disease. These observations might suggest that the more general approach of proteostasis pathway alteration would be a powerful one in treating these disorders. Examining results from human genetics and studies in model organisms, as well as from biochemical and biophysical characterization of the proteins involved in both diseases, we find that most instances of PD can be considered as arising from the misfolding, and self-association to a toxic species, of the small neuronal protein α-synuclein, and that proteostasis strategies are likely to be of value for this disorder. For ALS, the situation is much more complex and less clear-cut; the available data are most consistent with a view that ALS may actually be a family of disorders, presenting similarly but arising from distinct and nonoverlapping causes, including mislocalization of some properly folded proteins and derangement of RNA quality control pathways. Applying proteostasis approaches to this disease may require rethinking or broadening the concept of what proteostasis means.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Doença de Parkinson/metabolismo , Deficiências na Proteostase/metabolismo , Esclerose Lateral Amiotrófica/complicações , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Humanos , Corpos de Inclusão , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Camundongos , Doença de Parkinson/complicações , Doença de Parkinson/genética , Dobramento de Proteína , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estabilidade Proteica , Transporte Proteico , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
18.
PLoS Biol ; 9(4): e1001052, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21541368

RESUMO

FUS/TLS is a nucleic acid binding protein that, when mutated, can cause a subset of familial amyotrophic lateral sclerosis (fALS). Although FUS/TLS is normally located predominantly in the nucleus, the pathogenic mutant forms of FUS/TLS traffic to, and form inclusions in, the cytoplasm of affected spinal motor neurons or glia. Here we report a yeast model of human FUS/TLS expression that recapitulates multiple salient features of the pathology of the disease-causing mutant proteins, including nuclear to cytoplasmic translocation, inclusion formation, and cytotoxicity. Protein domain analysis indicates that the carboxyl-terminus of FUS/TLS, where most of the ALS-associated mutations are clustered, is required but not sufficient for the toxicity of the protein. A genome-wide genetic screen using a yeast over-expression library identified five yeast DNA/RNA binding proteins, encoded by the yeast genes ECM32, NAM8, SBP1, SKO1, and VHR1, that rescue the toxicity of human FUS/TLS without changing its expression level, cytoplasmic translocation, or inclusion formation. Furthermore, hUPF1, a human homologue of ECM32, also rescues the toxicity of FUS/TLS in this model, validating the yeast model and implicating a possible insufficiency in RNA processing or the RNA quality control machinery in the mechanism of FUS/TLS mediated toxicity. Examination of the effect of FUS/TLS expression on the decay of selected mRNAs in yeast indicates that the nonsense-mediated decay pathway is probably not the major determinant of either toxicity or suppression.


Assuntos
DNA Helicases/metabolismo , Proteína FUS de Ligação a RNA/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Transativadores/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Núcleo Celular/genética , Citoplasma/genética , Citoplasma/metabolismo , DNA Helicases/genética , Regulação da Expressão Gênica , Mutação , Neurônios/metabolismo , RNA Helicases , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
19.
Proc Natl Acad Sci U S A ; 107(50): 21394-9, 2010 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-21098299

RESUMO

Amyotrophic lateral sclerosis (ALS) is a disorder characterized by the death of both upper and lower motor neurons and by 3- to 5-yr median survival postdiagnosis. The only US Food and Drug Administration-approved drug for the treatment of ALS, Riluzole, has at best, moderate effect on patient survival and quality of life; therefore innovative approaches are needed to combat neurodegenerative disease. Some familial forms of ALS (fALS) have been linked to mutations in the Cu/Zn superoxide dismutase (SOD1). The dominant inheritance of mutant SOD1 and lack of symptoms in knockout mice suggest a "gain of toxic function" as opposed to a loss of function. A prevailing hypothesis for the mechanism of the toxicity of fALS-SOD1 variants, or the gain of toxic function, involves dimer destabilization and dissociation as an early step in SOD1 aggregation. Therefore, stabilizing the SOD1 dimer, thus preventing aggregation, is a potential therapeutic strategy. Here, we report a strategy in which we chemically cross-link the SOD1 dimer using two adjacent cysteine residues on each respective monomer (Cys111). Stabilization, measured as an increase in melting temperature, of ∼20 °C and ∼45 °C was observed for two mutants, G93A and G85R, respectively. This stabilization is the largest for SOD1, and to the best of our knowledge, for any disease-related protein. In addition, chemical cross-linking conferred activity upon G85R, an otherwise inactive mutant. These results demonstrate that targeting these cysteine residues is an important new strategy for development of ALS therapies.


Assuntos
Esclerose Lateral Amiotrófica/enzimologia , Estabilidade Enzimática , Superóxido Dismutase/metabolismo , Esclerose Lateral Amiotrófica/genética , Animais , Reagentes de Ligações Cruzadas/química , Dissulfetos/química , Humanos , Maleimidas/química , Camundongos , Estrutura Molecular , Mutação , Multimerização Proteica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Compostos de Sulfidrila/química , Superóxido Dismutase/química , Superóxido Dismutase/genética , Superóxido Dismutase-1
20.
J Comput Aided Mol Des ; 23(8): 491-500, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19521672

RESUMO

The identification of hot spots, i.e., binding regions that contribute substantially to the free energy of ligand binding, is a critical step for structure-based drug design. Here we present the application of two fragment-based methods to the detection of hot spots for DJ-1 and glucocerebrosidase (GCase), targets for the development of therapeutics for Parkinson's and Gaucher's diseases, respectively. While the structures of these two proteins are known, binding information is lacking. In this study we employ the experimental multiple solvent crystal structures (MSCS) method and computational fragment mapping (FTMap) to identify regions suitable for the development of pharmacological chaperones for DJ-1 and GCase. Comparison of data derived via MSCS and FTMap also shows that FTMap, a computational method for the identification of fragment binding hot spots, is an accurate and robust alternative to the performance of expensive and difficult crystallographic experiments.


Assuntos
Descoberta de Drogas , Glucosilceramidase/química , Peptídeos e Proteínas de Sinalização Intracelular/química , Proteínas Oncogênicas/química , Bibliotecas de Moléculas Pequenas/química , Sítios de Ligação , Cristalografia por Raios X , Doença de Gaucher/tratamento farmacológico , Humanos , Ligantes , Proteínas de Membrana/química , Terapia de Alvo Molecular , Doença de Parkinson/tratamento farmacológico , Ligação Proteica , Conformação Proteica , Proteína Desglicase DJ-1 , Bibliotecas de Moléculas Pequenas/uso terapêutico , Solventes/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA