Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BJS Open ; 8(5)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39230923

RESUMO

BACKGROUND: Anastomotic leakage following colorectal surgery remains a significant complication despite advances in surgical techniques. Recent findings on serosal injury repair in coelomic cavities, such as the peritoneum, challenge the current understanding of the cellular origins and mechanisms underlying intestinal anastomotic healing. Understanding the contribution of each layer of the intestinal wall during anastomotic healing is needed to find new therapeutic strategies to prevent anastomotic leakage. The aim of this experimental study was to investigate the role of the serosal layer of the intestinal wall in anastomotic healing. MATERIALS AND METHODS: Comprehensive histologic analysis of human and murine anastomoses was performed to elucidate histologic changes in the different intestinal layers during anastomotic healing. In vivo staining of the extracellular matrix (ECM) in the serosal layer was performed using a fluorophore-conjugated N-hydroxysuccinimide-ester before anastomosis surgery in a murine model. RESULTS: Histological examination of both human and murine anastomoses revealed that closure of the serosal layer occurred first during the healing process. In vivo serosal ECM staining demonstrated that a significant portion of the newly formed ECM within the anastomosis was indeed deposited onto the serosal layer. Furthermore, mesenchymal cells within the anastomotic scar were positive for mesothelial cell markers, podoplanin and Wilms tumour protein. CONCLUSIONS: In this experimental study, the results suggest that serosal scar formation is an important mechanism for anastomotic integrity in intestinal anastomoses. Mesothelial cells may significantly contribute to scar formation during anastomotic healing through epithelial-to-mesenchymal transition, potentially suggesting a novel therapeutic target to prevent anastomotic leakage by enhancing physiological healing processes.


Assuntos
Anastomose Cirúrgica , Fístula Anastomótica , Membrana Serosa , Cicatrização , Animais , Anastomose Cirúrgica/efeitos adversos , Humanos , Camundongos , Cicatrização/fisiologia , Fístula Anastomótica/prevenção & controle , Fístula Anastomótica/etiologia , Membrana Serosa/patologia , Masculino , Matriz Extracelular/metabolismo , Feminino , Camundongos Endogâmicos C57BL , Colo/cirurgia , Colo/patologia
2.
Int J Mol Sci ; 25(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38256251

RESUMO

The transient receptor potential vanilloid 4 (TRPV4) specifically functions as a mechanosensitive ion channel and is responsible for conveying changes in physical stimuli such as mechanical stress, osmotic pressure, and temperature. TRPV4 enables the entry of cation ions, particularly calcium ions, into the cell. Activation of TRPV4 channels initiates calcium oscillations, which trigger intracellular signaling pathways involved in a plethora of cellular processes, including tissue repair. Widely expressed throughout the body, TRPV4 can be activated by a wide array of physicochemical stimuli, thus contributing to sensory and physiological functions in multiple organs. This review focuses on how TRPV4 senses environmental cues and thereby initiates and maintains calcium oscillations, critical for responses to organ injury, tissue repair, and fibrosis. We provide a summary of TRPV4-induced calcium oscillations in distinct organ systems, along with the upstream and downstream signaling pathways involved. In addition, we delineate current animal and disease models supporting TRPV4 research and shed light on potential therapeutic targets for modulating TRPV4-induced calcium oscillation to promote tissue repair while reducing tissue fibrosis.


Assuntos
Antineoplásicos , Sinalização do Cálcio , Animais , Canais de Cátion TRPV , Cicatrização , Fibrose , Íons
3.
Nat Protoc ; 18(10): 2876-2890, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37558896

RESUMO

Connective tissues are essential building blocks for organ development, repair and regeneration. However, we are at the early stages of understanding connective tissue dynamics. Here, we detail a method that enables in vivo fate mapping of organ extracellular matrix (ECM) by taking advantage of a crosslinking chemical reaction between amine groups and N-hydroxysuccinimide esters. This methodology enables robust labeling of ECM proteins, which complement previous affinity-based single-protein methods. This protocol is intended for entry-level scientists and the labeling step takes between 5 and 10 min. ECM 'tagging' with fluorophores using N-hydroxysuccinimide esters enables visualization of ECM spatial modifications and is particularly useful to study connective tissue dynamics in organ fibrosis, tumor stroma formation, wound healing and regeneration. This in vivo chemical fate mapping methodology is highly versatile, regardless of the tissue/organ system, and complements cellular fate-mapping techniques. Furthermore, as the basic chemistry of proteins is highly conserved between species, this method is also suitable for cross-species comparative studies of ECM dynamics.


Assuntos
Matriz Extracelular , Succinimidas , Matriz Extracelular/metabolismo , Tecido Conjuntivo , Proteínas da Matriz Extracelular/metabolismo
4.
JCI Insight ; 8(6)2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36795484

RESUMO

Ovarian cancer (OvCa) preferentially metastasizes in association with mesothelial cell-lined surfaces. We sought to determine if mesothelial cells are required for OvCa metastasis and detect alterations in mesothelial cell gene expression and cytokine secretion upon interaction with OvCa cells. Using omental samples from patients with high-grade serous OvCa and mouse models with Wt1-driven GFP-expressing mesothelial cells, we validated the intratumoral localization of mesothelial cells during human and mouse OvCa omental metastasis. Removing mesothelial cells ex vivo from human and mouse omenta or in vivo using diphtheria toxin-mediated ablation in Msln-Cre mice significantly inhibited OvCa cell adhesion and colonization. Human ascites induced angiopoietin-like 4 (ANGPTL4) and stanniocalcin 1 (STC1) expression and secretion by mesothelial cells. Inhibition of STC1 or ANGPTL4 via RNAi obstructed OvCa cell-induced mesothelial cell to mesenchymal transition while inhibition of ANGPTL4 alone obstructed OvCa cell-induced mesothelial cell migration and glycolysis. Inhibition of mesothelial cell ANGPTL4 secretion via RNAi prevented mesothelial cell-induced monocyte migration, endothelial cell vessel formation, and OvCa cell adhesion, migration, and proliferation. In contrast, inhibition of mesothelial cell STC1 secretion via RNAi prevented mesothelial cell-induced endothelial cell vessel formation and OvCa cell adhesion, migration, proliferation, and invasion. Additionally, blocking ANPTL4 function with Abs reduced the ex vivo colonization of 3 different OvCa cell lines on human omental tissue explants and in vivo colonization of ID8p53-/-Brca2-/- cells on mouse omenta. These findings indicate that mesothelial cells are important to the initial stages of OvCa metastasis and that the crosstalk between mesothelial cells and the tumor microenvironment promotes OvCa metastasis through the secretion of ANGPTL4.


Assuntos
Neoplasias Ovarianas , Neoplasias Peritoneais , Humanos , Animais , Camundongos , Feminino , Linhagem Celular Tumoral , Neoplasias Ovarianas/metabolismo , Ascite , Neoplasias Peritoneais/secundário , Microambiente Tumoral , Proteína 4 Semelhante a Angiopoietina/genética
5.
J Invest Dermatol ; 143(5): 854-863.e4, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36442618

RESUMO

Deep skin wounds rapidly heal by mobilizing extracellular matrix and cells from the fascia, deep beneath the dermal layer of the skin, to form scars. Despite wounds being an extensively studied area and an unmet clinical need, the biochemistry driving this patch-like repair remains obscure. Lacking also are efficacious therapeutic means to modulate scar formation in vivo. In this study, we identify a central role for p120 in mediating fascia mobilization and wound repair. Injury triggers p120 expression, largely within engrailed-1 lineage-positive fibroblasts of the fascia that exhibit a supracellular organization. Using adeno-associated virus‒mediated gene silencing, we show that p120 establishes the supracellular organization of fascia engrailed-1 lineage-positive fibroblasts, without which fascia mobilization is impaired. Gene silencing of p120 in fascia fibroblasts disentangles their supracellular organization, reducing the transfer of fascial cells and extracellular matrix into wounds and augmenting wound healing. Our findings place p120 as essential for fascia mobilization, opening, to our knowledge, a previously unreported therapeutic avenue for targeted intervention in the treatment of a variety of skin scar conditions.


Assuntos
Cicatriz , Cicatrização , Humanos , Cicatriz/genética , Cicatriz/terapia , Cicatriz/metabolismo , Cicatrização/genética , Pele/patologia , Fáscia/patologia , Fibroblastos/metabolismo
6.
Med Sci (Basel) ; 10(2)2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-35466231

RESUMO

Skin wound repair has been the central focus of clinicians and scientists for almost a century. Insights into acute and chronic wound healing as well as scarring have influenced and ameliorated wound treatment. Our knowledge of normal skin notwithstanding, little is known of acute and chronic wound repair of genital skin. In contrast to extra-genital skin, hypertrophic scarring is uncommon in genital tissue. Chronic wound healing disorders of the genitals are mostly confined to mucosal tissue diseases. This article will provide insights into the differences between extra-genital and genital skin with regard to anatomy, physiology and aberrant wound repair. In light of fundamental differences between genital and normal skin, it is recommended that reconstructive and esthetic surgery should exclusively be performed by specialists with profound expertise in genital wound repair.


Assuntos
Cicatriz Hipertrófica , Pele , Cicatriz Hipertrófica/terapia , Genitália/cirurgia , Humanos , Sistema Urogenital
7.
Int J Biol Macromol ; 202: 657-670, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35066024

RESUMO

Chronic non-healing diabetic wounds and ulcers can be fatal, lead to amputations, and remain a major challenge to medical, and health care sectors. Susceptibility to infection and impaired angiogenesis are two central reasons for the clinical consequences associated with chronic non-healing diabetic wounds. Herein, we successfully developed calcium ion (Ca2+) cross-linked sodium alginate (SA) hydrogels with both pro-angiogenesis and antibacterial properties. Our results demonstrated that deferoxamine (DFO) and copper nanoparticles (Cu-NPs) worked synergistically to enhance the proliferation, migration, and angiogenesis of human umbilical venous endothelial cells in vitro. Results of colony formation assay indicated Cu-NPs were effective against E. coli and S. aureus in a dose-dependent manner in vitro. An SA hydrogel containing both DFO and Cu-NPs (SA-DFO/Cu) was prepared using a Ca2+ cross-linking method. Cytotoxicity assay and colony formation assay indicated that the hydrogel exhibited beneficial biocompatible and antibacterial properties in vitro. Furthermore, SA-DFO/Cu significantly accelerated diabetic wound healing, improved angiogenesis and reduced long-lasting inflammation in a mouse model of diabetic wound. Mechanistically, DFO and Cu-NPs synergistically stimulated the levels of hypoxia-inducible factor 1α and vascular endothelial growth factor in vivo. Given the pro-angiogenesis, antibacterial and healing properties, the hydrogel possesses high potential for clinical application in refractory wounds.


Assuntos
Diabetes Mellitus , Nanopartículas , Alginatos , Animais , Cálcio , Cobre , Desferroxamina/farmacologia , Escherichia coli , Células Endoteliais da Veia Umbilical Humana , Humanos , Hidrogéis/farmacologia , Camundongos , Staphylococcus aureus , Fator A de Crescimento do Endotélio Vascular , Cicatrização
8.
Nat Commun ; 11(1): 3068, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32555155

RESUMO

Surgical adhesions are bands of scar tissues that abnormally conjoin organ surfaces. Adhesions are a major cause of post-operative and dialysis-related complications, yet their patho-mechanism remains elusive, and prevention agents in clinical trials have thus far failed to achieve efficacy. Here, we uncover the adhesion initiation mechanism by coating beads with human mesothelial cells that normally line organ surfaces, and viewing them under adhesion stimuli. We document expansive membrane protrusions from mesothelia that tether beads with massive accompanying adherence forces. Membrane protrusions precede matrix deposition, and can transmit adhesion stimuli to healthy surfaces. We identify cytoskeletal effectors and calcium signaling as molecular triggers that initiate surgical adhesions. A single, localized dose targeting these early germinal events completely prevented adhesions in a preclinical mouse model, and in human assays. Our findings classifies the adhesion pathology as originating from mesothelial membrane bridges and offer a radically new therapeutic approach to treat adhesions.


Assuntos
Cálcio/química , Epitélio/metabolismo , Aderências Teciduais/metabolismo , Animais , Sinalização do Cálcio , Adesão Celular , Linhagem Celular , Membrana Celular/metabolismo , Biologia Computacional , Citoesqueleto/metabolismo , Citosol/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Imageamento Tridimensional , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Complicações Pós-Operatórias , Análise de Componente Principal , RNA Interferente Pequeno/metabolismo , Análise de Célula Única
9.
Wound Repair Regen ; 28(1): 49-60, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31571377

RESUMO

Nonhealing chronic wounds in the constantly growing elderly population represent a major public health problem with high socioeconomic burden. Yet, the underlying mechanism of age-related impairment of wound healing remains elusive. Here, we show that the number of dermal cells expressing cyclin-dependent kinase inhibitor p21 was elevated upon skin injury, particularly in aged population, in both man and mouse. The nuclear expression of p21 in activated wound fibroblasts delayed the onset of the proliferation phase of wound healing in a p53-independent manner. Further, the local and transient inhibition of p21 expression by in vivo delivered p21-targeting siRNA ameliorated the delayed wound healing in aged mice. Our results suggest that the increased number of p21+ wound fibroblasts enforces the age-related compromised healing, and targeting p21 creates potential clinical avenues to promote wound healing in aged population.


Assuntos
Envelhecimento/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Fibroblastos/metabolismo , Cicatrização/genética , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Animais , Inibidor de Quinase Dependente de Ciclina p21/antagonistas & inibidores , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Proteína Supressora de Tumor p53
10.
Blood Adv ; 3(18): 2713-2721, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31519647

RESUMO

Peritoneal adhesions are pathological fibroses that ensnare organs after abdominal surgery. This dense connective tissue can cause small bowel obstruction, female infertility, and chronic abdominal pain. The pathogenesis of adhesions is a fibrotic response to tissue damage coordinated between mesothelial cells, fibroblasts, and immune cells. We have previously demonstrated that peritoneal adhesions are a consequence of mechanical injury to the mesothelial layer sustained during surgery. Neutrophils are among the first leukocytes involved in the early response to tissue damage. Here, we show that when subjected to mechanical stress, activated mesothelial cells directly recruit neutrophils and monocytes through upregulation of chemokines such as CXCL1 and monocyte chemoattractant protein 1 (MCP-1). We find that neutrophils within the adhesion sites undergo cell death and form neutrophil extracellular traps (NETosis) that contribute to pathogenesis. Conversely, tissue-resident macrophages were profoundly depleted throughout the disease time course. We show that this is distinct from traditional inflammatory kinetics such as after sham surgery or chemically induced peritonitis, and suggest that adhesions result from a primary difference in inflammatory kinetics. We find that transient depletion of circulating neutrophils significantly decreases adhesion burden, and further recruitment of monocytes with thioglycolate or MCP-1 also improves outcomes. Our findings suggest that the combination of neutrophil depletion and monocyte recruitment is sufficient to prevent adhesion formation, thus providing insight for potential clinical interventions.


Assuntos
Monócitos/metabolismo , Neutrófilos/metabolismo , Aderências Teciduais/metabolismo , Animais , Feminino , Humanos , Camundongos
11.
Sci Transl Med ; 10(469)2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30487249

RESUMO

Peritoneal adhesions are fibrous tissues that tether organs to one another or to the peritoneal wall and are a major cause of postsurgical and infectious morbidity. The primary molecular chain of events leading to the initiation of adhesions has been elusive, chiefly due to the lack of an identifiable cell of origin. Using clonal analysis and lineage tracing, we have identified injured surface mesothelium expressing podoplanin (PDPN) and mesothelin (MSLN) as a primary instigator of peritoneal adhesions after surgery in mice. We demonstrate that an anti-MSLN antibody diminished adhesion formation in a mouse model where adhesions were induced by surgical ligation to form ischemic buttons and subsequent surgical abrasion of the peritoneum. RNA sequencing and bioinformatics analyses of mouse mesothelial cells from injured mesothelium revealed aspects of the pathological mechanism of adhesion development and yielded several potential regulators of this process. Specifically, we show that PDPN+MSLN+ mesothelium responded to hypoxia by early up-regulation of hypoxia-inducible factor 1 alpha (HIF1α) that preceded adhesion development. Inhibition of HIF1α with small molecules ameliorated the injury program in damaged mesothelium and was sufficient to diminish adhesion severity in a mouse model. Analyses of human adhesion tissue suggested that similar surface markers and signaling pathways may contribute to surgical adhesions in human patients.


Assuntos
Anticorpos/farmacologia , Biomarcadores/metabolismo , Epitélio/patologia , Aderências Teciduais/patologia , Animais , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Epitélio/efeitos dos fármacos , Epitélio/metabolismo , Epitélio/ultraestrutura , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Mesotelina , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Peritônio/efeitos dos fármacos , Peritônio/lesões , Peritônio/patologia , Aderências Teciduais/genética , Transcrição Gênica
12.
Commun Biol ; 1: 170, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30345394

RESUMO

The internal organs embedded in the cavities are lined by an epithelial monolayer termed the mesothelium. The mesothelium is increasingly implicated in driving various internal organ pathologies, as many of the normal embryonic developmental pathways acting in mesothelial cells, such as those regulating epithelial-to-mesenchymal transition, also drive disease progression in adult life. Here, we summarize observations from different animal models and organ systems that collectively point toward a central role of epithelial-to-mesenchymal transition in driving tissue fibrosis, acute scarring, and cancer metastasis. Thus, drugs targeting pathways of mesothelium's transition may have broad therapeutic benefits in patients suffering from these diseases.

13.
Cancer Res ; 76(6): 1348-53, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26719541

RESUMO

Although tumor blood vessels have been a major therapeutic target for cancer chemotherapy, little is known regarding the stepwise development of the tumor microenvironment. Here, we use a multicolor Cre-dependent marker system to trace clonality within the tumor microenvironment to show that tumor blood vessels follow a pattern of dynamic clonal evolution. In an advanced melanoma tumor microenvironment, the vast majority of tumor vasculature clones are derived from a common precursor. Quantitative lineage analysis reveals founder clones diminish in frequency and are replaced by subclones as tumors evolve. These tumor-specific blood vessels are characterized by a developmental switch to a more invasive and immunologically silent phenotype. Gene expression profiling and pathway analysis reveals selection for traits promoting upregulation of alternative angiogenic programs such as unregulated HGF-MET signaling and enhanced autocrine signaling through VEGF and PDGF. Furthermore, we show a developmental switch in the expression of functionally significant primary lymphocyte adhesion molecules on tumor endothelium, such as the loss in expression of the mucosal addressin MAdCAM-1, whose counter receptor a4ß7 on lymphocytes controls lymphocyte homing. Changes in adhesive properties on tumor endothelial subclones are accompanied by decreases in expression of lymphocyte chemokines CXCL16, CXCL13, CXCL12, CXCL9, CXCL10, and CCL19. These evolutionary patterns in the expressed genetic program within tumor endothelium will have both a quantitative and functional impact on lymphocyte distribution that may well influence tumor immune function and underlie escape mechanisms from current antiangiogenic pharmacotherapies.


Assuntos
Evolução Clonal/fisiologia , Endotélio Vascular/fisiologia , Linfócitos/patologia , Evasão Tumoral/fisiologia , Animais , Adesão Celular/fisiologia , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Quimiocina CCL19/metabolismo , Quimiocinas CXC/metabolismo , Endotélio Vascular/metabolismo , Perfilação da Expressão Gênica/métodos , Fator de Crescimento de Hepatócito/metabolismo , Linfócitos/metabolismo , Camundongos , Mucoproteínas , Neoplasias/metabolismo , Neoplasias/patologia , Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Transdução de Sinais/fisiologia , Microambiente Tumoral/fisiologia , Regulação para Cima/fisiologia
14.
Science ; 348(6232): aaa2151, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25883361

RESUMO

Dermal fibroblasts represent a heterogeneous population of cells with diverse features that remain largely undefined. We reveal the presence of at least two fibroblast lineages in murine dorsal skin. Lineage tracing and transplantation assays demonstrate that a single fibroblast lineage is responsible for the bulk of connective tissue deposition during embryonic development, cutaneous wound healing, radiation fibrosis, and cancer stroma formation. Lineage-specific cell ablation leads to diminished connective tissue deposition in wounds and reduces melanoma growth. Using flow cytometry, we identify CD26/DPP4 as a surface marker that allows isolation of this lineage. Small molecule-based inhibition of CD26/DPP4 enzymatic activity during wound healing results in diminished cutaneous scarring. Identification and isolation of these lineages hold promise for translational medicine aimed at in vivo modulation of fibrogenic behavior.


Assuntos
Separação Celular/métodos , Cicatriz/patologia , Fibroblastos/fisiologia , Pele/patologia , Cicatrização , Animais , Linhagem da Célula/genética , Cicatriz/metabolismo , Modelos Animais de Doenças , Desenvolvimento Embrionário , Células-Tronco Embrionárias/citologia , Fibroblastos/citologia , Fibroblastos/patologia , Expressão Gênica , Proteínas de Homeodomínio/genética , Camundongos , Boca/lesões , Boca/patologia , Boca/cirurgia , Pele/lesões , Pesquisa Translacional Biomédica
17.
Dev Cell ; 24(1): 76-88, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23260626

RESUMO

The mechanisms that sustain stem cells are fundamental to tissue maintenance. Here, we identify "cell islands" (CIs) as a niche for putative germ and somatic stem cells in Botryllus schlosseri, a colonial chordate that undergoes weekly cycles of death and regeneration. Cells within CIs express markers associated with germ and somatic stem cells and gene products that implicate CIs as signaling centers for stem cells. Transplantation of CIs induced long-term germline and somatic chimerism, demonstrating self-renewal and pluripotency of CI cells. Cell labeling and in vivo time-lapse imaging of CI cells reveal waves of migrations from degrading CIs into developing buds, contributing to soma and germline development. Knockdown of cadherin, which is highly expressed within CIs, elicited the migration of CI cells to circulation. Piwi knockdown resulted in regeneration arrest. We suggest that repeated trafficking of stem cells allows them to escape constraints imposed by the niche, enabling self-preservation throughout life.


Assuntos
Células Germinativas/citologia , Regeneração/fisiologia , Nicho de Células-Tronco/fisiologia , Células-Tronco/citologia , Urocordados/citologia , Animais , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Caderinas/genética , Caderinas/metabolismo , Células Cultivadas , Células Germinativas/fisiologia , Técnicas Imunoenzimáticas , Hibridização In Situ , Sondas RNA , Células-Tronco/fisiologia , Urocordados/genética , Urocordados/metabolismo
18.
Nature ; 476(7361): 409-13, 2011 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-21866153

RESUMO

The regrowth of amputated limbs and the distal tips of digits represent models of tissue regeneration in amphibians, fish and mice. For decades it had been assumed that limb regeneration derived from the blastema, an undifferentiated pluripotent cell population thought to be derived from mature cells via dedifferentiation. Here we show that a wide range of tissue stem/progenitor cells contribute towards the restoration of the mouse distal digit. Genetic fate mapping and clonal analysis of individual cells revealed that these stem cells are lineage restricted, mimicking digit growth during development. Transplantation of cyan-fluorescent-protein-expressing haematopoietic stem cells, and parabiosis between genetically marked mice, confirmed that the stem/progenitor cells are tissue resident, including the cells involved in angiogenesis. These results, combined with those from appendage regeneration in other vertebrate subphyla, collectively demonstrate that tissue stem cells rather than pluripotent blastema cells are an evolutionarily conserved cellular mode for limb regeneration after amputation.


Assuntos
Linhagem da Célula , Extremidades/crescimento & desenvolvimento , Camadas Germinativas/citologia , Regeneração/fisiologia , Células-Tronco/citologia , Animais , Osso e Ossos/citologia , Células Clonais , Ectoderma/citologia , Ectoderma/crescimento & desenvolvimento , Endotélio/citologia , Endotélio/crescimento & desenvolvimento , Feminino , Células-Tronco Hematopoéticas/citologia , Masculino , Mesoderma/citologia , Mesoderma/crescimento & desenvolvimento , Camundongos , Especificidade de Órgãos , Tendões/citologia , Tendões/crescimento & desenvolvimento
19.
Dev Biol ; 345(1): 94-104, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20553710

RESUMO

The colonial tunicate Botrylloides leachi can regenerate functional adults from minute vasculature fragments, in a poorly understood phenomenon termed Whole Body Regeneration (WBR). Using Piwi expression (Bl-Piwi), blood cell labeling and electron microscopy, we show that WBR develops through activation, mobilization and expansion of 'dormant' cells which normally line the internal vasculature epithelium of blood vessels. Following a mechanical insult, these cells express Bl-Piwi de novo, change morphology and invade niches of the vasculature lumen, where they proliferate and differentiate, regenerating a functional organism. Mitomycin C treatments and siRNA knockdown of Bl-Piwi result in deficient cells incapable of expanding or differentiating and to subsequent regeneration arrest. Last, we find similar transient mobilization of Piwi(+) cells recurring every week, as part of normal colony development, and also during acute environmental stress. This recurrent activation of Piwi(+) cells in response to developmental, physiological and environmental insults may have enabled the adaptation of colonial tunicates to the imposed varied conditions in the marine, shallow water environment.


Assuntos
Endotélio Vascular/metabolismo , Proteínas/metabolismo , Regeneração , Urocordados/fisiologia , Animais , Antibióticos Antineoplásicos/farmacologia , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/fisiologia , Endotélio Vascular/citologia , Endotélio Vascular/ultraestrutura , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Microscopia Eletrônica de Transmissão , Mitomicina/farmacologia , Proteínas/genética , Interferência de RNA , Urocordados/citologia , Urocordados/genética
20.
Dev Biol ; 331(2): 113-28, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19406116

RESUMO

Germ cell sequestering in Animalia is enlightened by either, launching true germ line along epigenetic or preformistic modes of development, or by somatic embryogenesis, where no true germ line is set aside. The research on germ line-somatic tissue segregation is of special relevancy to colonial organisms like botryllid ascidians that reconstruct, on a weekly basis, completely new sets of male and female gonads in newly formed somatic tissues. By sequencing and evaluating expression patterns of BS-Vasa, the Botryllus schlosseri orthologue of Vasa, in sexually mature and asexual colonies during blastogenesis, we have demonstrated that the BS-Vasa mRNA and protein are not expressed exclusively in germ cell lineages, but appeared in cells repeatedly emerging de novo in the colony, independently of its sexual state. In addition, we recorded an immediate Vasa response to cellular stress (UV irradiation) indicating additional functions to its germ line assignments. To confirm germ lineage exclusivity, we examined the expression of three more stem cell markers (BS-Pl10, Bl-piwi and Oct4). Vasa co-expression with Pl10 and Oct4 was detected in germ line derivatives and with Bl-piwi in somatic tissues. Presumptive primordial germ cells (PGC-like cells), that are Vasa(+)/Pl10(+)/Oct4(+) and 6-12 microm in diameter, were first detected in wrapped-tail embryos, in oozooids, in sexual/asexual colonies, within a newly identified PGC niche termed as 'budlet niche', and in circulating blood borne cells, indicating epigenetic embryogenesis. Alternatively, BS-Vasa co-expression with piwi orthologue, an omnipresent bona fide stemness flag, in non germ line cell populations, may indicate germ cell neogenesis (somatic embryogenesis) in B. schlosseri. Both alternatives are not necessarily mutually exclusive.


Assuntos
RNA Helicases DEAD-box/biossíntese , Células Germinativas/citologia , Urocordados/metabolismo , Animais , Antígenos de Diferenciação/metabolismo , Linhagem da Célula , RNA Helicases DEAD-box/genética , Embrião não Mamífero/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Filogenia , RNA Mensageiro/biossíntese , Urocordados/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA