Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 480: 136064, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39369674

RESUMO

High arsenic (As), fluoride (F-), and microbial pathogens coexist in semiarid conditions afflicting > 240 million people worldwide including Pakistan. Groundwater quality has declined due to geogenic and manmade activities providing suitable ground for ubiquity, bioavailability, and toxicity of contaminants. We tested the health hazard, distribution, and apportionment of As, F-, and microbes in groundwater around coal mines in Quetta, Pakistan. The range of As, and F- concentrations in groundwater were 0.2-16.6 µg/L, 0.4-18.5 mg/L. Both, As and F- correlate with high HCO3-, pH, Na+, SO42-, Fe, and Mn, and negatively with Ca2+ water. The coalfield showed many folds higher As 15.8-28.5 µg/L, and F- 10.8-34.5 mg/L compared to groundwater-wells. Geochemical phases revealed saturation of groundwater with calcite, dolomite, fluorite, gypsum, and undersaturation with halite-mirabilite, and arsenopyrite minerals. The positive matrix factorization (PMF) model assessed five-factor solutions: geogenic, industrial, coal mining, sulfide & fluoride-bearing mineral-dissolution, and agriculture pollution delivered As, F-, and microbial contamination. About 24.6 % and 64.4 % of groundwater samples exceeded the WHO guidelines of As 10 µg/L, F- 1.5 mg/L. The carcinogenicity, and non-carcinogenicity of As, and F- were higher in children than adults. Therefore, health hazards in children are of great concern in achieving sustainable management goals.

2.
Sci Total Environ ; 945: 173998, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38901575

RESUMO

Globally, power stations generate huge amounts of the hazardous waste heavy oil fly ash (HOFA), which is rich in Ni, V, Fe, S, and dumped into landfills. Thus, exploring new approaches for a safe recycling and sustainable management of HOFA is needed and of great environmental interest. The potential application of HOFA as an amendment to sandy soils has not been studied yet. This is the first research investigating the potentiality of using HOFA as a soil conditioner. To this end, we conducted a greenhouse experiment in order to investigate the impacts of HOFA addition (1.2, 2.4, 3.6 t ha-1) to sandy soil on the total and available content of nutrients (e.g., S, Fe, Mn, Cu, Zn) and toxic elements (TEs; e.g., Cd, Co, Cr, Ni, Pb, V) in the soil and their phytoextraction and translocation by lemongrass (Cymbopogon citratus) and common sage (Salvia officinalis). We also assessed the impact of humic acid (HA) foliar application (50 and 100 l ha-1) on the growth and elements accumulation by the two plants. The studied HOFA was acidic and highly enriched in S (43,268.0), V (3,527.0), Ni (1774.0), and Fe (15,159.0) (units in mg kg-1). The X-ray absorption near edge structure (XANES) data showed that V in HOFA was composed primarily of V(IV) sorbed onto goethite, V(V) sorbed onto humic substances, in the forms of V2O3, and VCl4. Addition of the lower doses of HOFA (1.2 and 2.4 t ha-1) did not change significantly soil pH, salinity, and the total and available elements content compared to the unamended soil. Although the elements content in the 3.6 t ha-1 HOFA-treated soil was significantly higher than the untreated, the total content of all elements (except for Ni) was lower than the maximum allowable concentrations in soils. HOFA addition, particularly in the highest dose (3.6 t ha-1), decreased significantly the growth and biomass of both plants. Common sage accumulated more elements than lemongrass; however, the elements content in the plants was lower than the critical concentrations for sensitive plants. The foliar application of humic acid enhanced significantly the plant growth and increased their tolerance to the HOFA-induced stress. We conclude that the addition of HOFA up to 2.4 t ha-1 in a single application as amendment to sandy soils is not likely to create any TE toxicity problems to plants, particularly if combined with a foliar application of humic acid; however, repeated additions of HOFA may induce toxicity. These findings should be verified under field conditions.


Assuntos
Cinza de Carvão , Substâncias Húmicas , Poluentes do Solo , Solo , Poluentes do Solo/análise , Solo/química , Cymbopogon , Fertilizantes , Enxofre , Metais Pesados/análise
3.
J Hazard Mater ; 469: 134023, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38492393

RESUMO

Chronic exposure to high fluoride (F-) levels in groundwater causes community fluorosis and non-carcinogenic health concerns in local people. This study described occurrence, dental fluorosis, and origin of high F-groundwater using δ2H and δ18O isotopes at semiarid Gilgit, Pakistan. Therefore, groundwater (n = 85) was collected and analyzed for F- concentrations using ion-chromatography. The lowest F- concentration was 0.4 mg/L and the highest 6.8 mg/L. F- enrichment is linked with higher pH, NaHCO3, NaCl, δ18O, Na+, HCO3-, and depleted Ca+2 aquifers. The depleted δ2H and δ18O values indicated precipitation and higher values represented the evaporation effect. Thermodynamic considerations of fluorite minerals showed undersaturation, revealing that other F-bearing minerals viz. biotite and muscovite were essential in F- enrichment in groundwater. Positive matrix factorization (PMF) and principal component analysis multilinear regression (PCAMLR) models were used to determine four-factor solutions for groundwater contamination. The PMF model results were accurate and reliable compared with those of the PCAMLR model, which compiled the overlapping results. Therefore, 28.3% exceeded the WHO permissible limit of 1.5 mg/L F-. Photomicrographs of granite rocks showed enriched F-bearing minerals that trigger F- in groundwater. The community fluorosis index values were recorded at > 0.6, revealing community fluorosis and unsuitability of groundwater for drinking.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Humanos , Fluoretos/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Minerais/análise , Água Subterrânea/química , Isótopos/análise
4.
Environ Sci Technol ; 58(13): 5942-5951, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38507823

RESUMO

The intake of methylmercury (MeHg)-contaminated rice poses immense health risks to rice consumers. However, the mechanisms of MeHg accumulation in rice plants are not entirely understood. The knowledge that the MeHg-Cysteine complex was dominant in polished rice proposed a hypothesis of co-transportation of MeHg and cysteine inside rice plants. This study was therefore designed to explore the MeHg accumulation processes in rice plants by investigating biogeochemical associations between MeHg and amino acids. Rice plants and underlying soils were collected from different Hg-contaminated sites in the Wanshan Hg mining area. The concentrations of both MeHg and cysteine in polished rice were higher than those in other rice tissues. A significant positive correlation between MeHg and cysteine in rice plants was found, especially in polished rice, indicating a close geochemical association between cysteine and MeHg. The translocation factor (TF) of cysteine showed behavior similar to that of the TF of MeHg, demonstrating that these two chemical species might share a similar transportation mechanism in rice plants. The accumulation of MeHg in rice plants may vary due to differences in the molar ratios of MeHg to cysteine and the presence of specific amino acid transporters. Our results suggest that cysteine plays a vital role in MeHg accumulation and transportation inside rice plants.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Oryza , Poluentes do Solo , Compostos de Metilmercúrio/metabolismo , Cisteína/metabolismo , Monitoramento Ambiental/métodos , Mercúrio/análise , Solo/química
5.
J Hazard Mater ; 469: 133881, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38422740

RESUMO

Bromine (Br) is widely distributed through the lithosphere and hydrosphere, and its chemistry in the environment is affected by natural processes and anthropogenic activities. While the chemistry of Br in the atmosphere has been comprehensively explored, there has never been an overview of the chemistry of Br in soil and aquatic systems. This review synthesizes current knowledge on the sources, geochemistry, health and environmental threats, remediation approaches, and regulatory guidelines pertaining to Br pollution in terrestrial and aquatic environments. Volcanic eruptions, geothermal streams, and seawater are the major natural sources of Br. In soils and sediments, Br undergoes natural cycling between organic and inorganic forms, with bromination reactions occurring both abiotically and through microbial activity. For organisms, Br is a non-essential element; it is passively taken up by plant roots in the form of the Br- anion. Elevated Br- levels can limit plant growth on coastal soils of arid and semi-arid environments. Br is used in the chemical industry to manufacture pesticides, flame retardants, pharmaceuticals, and other products. Anthropogenic sources of organobromine contaminants in the environment are primarily wastewater treatment, fumigants, and flame retardants. When aqueous Br- reacts with oxidants in water treatment plants, it can generate brominated disinfection by-products (DBPs), and exposure to DBPs is linked to adverse human health effects including increased cancer risk. Br- can be removed from aquatic systems using adsorbents, and amelioration of soils containing excess Br- can be achieved by leaching, adding various amendments, or phytoremediation. Developing cost-effective methods for Br- removal from wastewater would help address the problem of toxic brominated DBPs. Other anthropogenic organobromines, such as polybrominated diphenyl ether (PBDE) flame retardants, are persistent, toxic, and bioaccumulative, posing a challenge in environmental remediation. Future research directives for managing Br pollution sustainably in various environmental settings are suggested here.


Assuntos
Ecossistema , Retardadores de Chama , Humanos , Bromo , Retardadores de Chama/análise , Gestão de Riscos , Solo/química
6.
J Hazard Mater ; 466: 133486, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38244456

RESUMO

Biochar is an eco-friendly amendment for the remediation of soils contaminated with cadmium (Cd). However, little attention has been paid to the influence and underlying mechanisms of the co-pyrolyzed biochar on the bioavailability and uptake of Cd in paddy soils. The current study explored the effects of biochar co-pyrolyzed from peanut shells (P) and maize straw (M) at different mixing ratios (1:0, 1:1, 1:2, 1:3, 0:1, 2:1 and 3:1, w/w), on the bacterial community and Cd fractionation in paddy soil, and its uptake by rice plant. Biochar addition, particularly P1M3 (P/M 1:3), significantly elevated soil pH and cation exchange capacity, transferred the mobile Cd to the residual fraction, and reduced Cd availability in the rhizosphere soil. P1M3 application decreased the concentration of Cd in different rice tissues (root, stem, leaf, and grain) by 30.0%- 49.4%, compared to the control. Also, P1M3 enhanced the microbial diversity indices and relative abundance of iron-oxidizing bacteria in the rhizosphere soil. Moreover, P1M3 was more effective in promoting the formation of iron plaque, increasing the Cd sequestration by iron plaque than other treatments. Consequently, the highest yield and lowest Cd accumulation in rice were observed following P1M3 application. This study revealed the feasibility of applying P1M3 for facilitating paddy soils contaminated with Cd.


Assuntos
Oryza , Poluentes do Solo , Cádmio/metabolismo , Arachis , Oryza/metabolismo , Zea mays/metabolismo , Solo/química , Poluentes do Solo/metabolismo , Ferro/metabolismo , Carvão Vegetal/química
7.
Environ Pollut ; 344: 123300, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38199483

RESUMO

Seed nano-priming can be used as an advanced technology for enhancing seed germination, plant growth, and crop productivity; however, the potential role of seed nano-priming in ameliorative cadmium (Cd) bio-toxicity under Cd stress has not yet been sufficiently investigated. Therefore, in this study we investigated the beneficial impacts of seed priming with low (L) and high (H) concentrations of nanoparticles including nSiO2 (50/100 mg L-1), nTiO2 (20/60 mg L-1), nZnO (50/100 mg L-1), nFe3O4 (100/200 mg L-1), nCuO (50/100 mg L-1), and nCeO2 (50/100 mg L-1) on lettuce growth and antioxidant enzyme activities aiming to assess their efficacy for enhancing plant growth and reducing Cd phytotoxicity. The results showed a significant increase in plant growth, biomass production, antioxidant enzyme activities, and photosynthetic efficiency in lettuce treated with nano-primed nSiH + Cd (100 mg L-1), nTiH + Cd (60 mg L-1), and nZnL + Cd (50 mg L-1) under Cd stress. Moreover, nano-priming effectively reduced the accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA) in lettuce shoots. Interestingly, nano-primed nSiH + Cd, nTiH + Cd, and nZnL + Cd demonstrated efficient reduction of Cd uptake, less translocation factor of Cd with high tolerance index, ultimately reducing toxicity by stabilizing the root morphology and superior accumulation of critical nutrients (K, Mg, Ca, Fe, and Zn). Thus, this study provides the first evidence of alleviating Cd toxicity in lettuce by using multiple nanoparticles via priming strategy. The findings highlight the potential of nanoparticles (Si, Zn, and Ti) as stress mitigation agents for improved crop growth and yield in Cd contaminated areas, thereby offering a promising and advanced approach for remediation of Cd contaminated environments.


Assuntos
Cádmio , Nanopartículas , Cádmio/toxicidade , Antioxidantes/farmacologia , Lactuca , Sementes , Nanopartículas/toxicidade
8.
J Hazard Mater ; 460: 132443, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37666175

RESUMO

Fluoride (F-), and arsenic (As) in the groundwater cause health problems in developing countries, including Pakistan. We evaluated the occurrence, distribution, sources apportionment, and health hazards of F-, and As in the groundwater of Mardan, Pakistan. Therefore, groundwater samples (n = 130) were collected and then analyzed for F-, and As by ion-chromatography (IC) and Inductively-coupled plasma mass-spectrometry (ICP-MS). The F-, and As concentrations in groundwater were 0.7-14.4 mg/L and 0.5-11.2 µg/L. Relatively elevated F-, and As coexists with higher pH, Na+, HCO3-, SO4-2, and depleted Ca+2 due to fluoride, sulfide-bearing minerals, and anthropogenic inputs. Both F-, and/or As are transported in subsurface water through adsorption and desorption processes. Groundwater samples 45%, and 14.2% exceeded the WHO guidelines of 1.5 mg/L and 10 µg/L. Water quality indexing (WQI-model) declared that 35.7% samples are unfit for household purposes. Saturation and undersaturation of minerals showed precipitation and mineral dissolution. Groundwater contamination by PCA-MLR and PMF-model interpreted five factors. The fitting results and R2 values of PMF (0.52-0.99)>PCA-MLR (0.50-0.95) showed high accuracy of PMF-model. Human health risk assessment (HHRA-model) revealed high non-carcinogenic and carcinogenic risk for children than adults. The percentile recovery of F- and As was recorded 98%, and 95% with reproducibility ± 5% error.


Assuntos
Arsênio , Água Subterrânea , Adulto , Criança , Humanos , Fluoretos/toxicidade , Reprodutibilidade dos Testes , Qualidade da Água
9.
J Environ Manage ; 347: 119056, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37757688

RESUMO

Contamination, hazard level and source of 10 widely concerned potentially toxic metal(loid)s (PTMs) Co, As, Pb, Cr, Cu, Zn, Ni, Mn, Ba, and V in fine dust with particle size below 63 µm (FD63) were investigated to assess the environmental quality of college campuses and influencing factors. PTMs sources were qualitatively analyzed using statistical methods and quantitatively apportioned using positive matrix factorization. Probabilistic contamination degrees of PTMs were evaluated using enrichment factor and Nemerow integrated enrichment factor. Eco-health risk levels of content-oriented and source-oriented for PTMs were evaluated using Monte Carlo simulation. Mean levels of Zn (643.8 mg kg-1), Pb (146.0 mg kg-1), Cr (145.9 mg kg-1), Cu (95.5 mg kg-1), and Ba (804.2 mg kg-1) in FD63 were significantly larger than soil background values. The possible sources of the concerned PTMs in FD63 were traffic non-exhaust emissions, natural source, mixed source (auto repair waste, paints and pigments) and traffic exhaust emissions, which accounted for 45.7%, 25.4%, 14.5% and 14.4% of total PTMs contents, respectively. Comprehensive contamination levels of PTMs were very high, mainly caused by Zn pollution and non-exhaust emissions. Combined ecological risk levels of PTMs were low and moderate, chiefly caused by Pb and traffic exhaust emissions. The non-cancer risks of the PTMs in FD63 to college students fell within safety level, while the carcinogenic PTMs in FD63 had a certain cancer risks to college students. The results of source-specific health risk assessment indicated that Cr and As were the priority PTMs, and the mixed source was the priority pollution source of PTMs in FD63 from college campuses, which should be paid attention to by the local government.


Assuntos
Metais Pesados , Poluentes do Solo , Humanos , Metais Pesados/análise , Monitoramento Ambiental/métodos , Poeira/análise , Chumbo , Método de Monte Carlo , Poluentes do Solo/análise , Medição de Risco , China , Cidades
10.
Environ Pollut ; 335: 122292, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37536477

RESUMO

The study aimed to investigate the role of hydrogen sulfide (H2S) in regulating chromium stress (Cr-S) tolerance of tomato plants treated with citric acid (CA). Prior to the Cr treatment, tomato plants were foliar-fed with CA (100 µM) daily for 3 days. Subsequently, the plants were grown for another ten days in a hydroponic system in a 50 µM Cr (VI) solution. Chromium treatment reduced photosynthetic pigments and plant biomass, but boosted the levels of hydrogen peroxide (H2O2) malondialdehyde (MDA), H2S, phytochelatins (PCs), and glutathione (GSH), electrolyte leakage (EL), and antioxidant enzyme activity in tomato plants. However, the foliar spray of CA mitigated the levels of H2O2, MDA, and EL, promoted plant growth and chlorophyll content, enhanced antioxidant enzymes' activities, and increased H2S production in Cr-S-tomato plants. CA also increased the levels of GSH and PCs, potentially reducing the toxicity of Cr through regulated sequestration. Additionally, the application of sodium hydrogen sulfide (NaHS), a donor of H2S, improved CA-induced Cr stress tolerance. The addition of CA promoted Cr accumulation in root cell wall and leaf vacuoles to suppress its toxicity. To assess the involvement of H2S in CA-mediated Cr-S tolerance, 0.1 mM hypotaurine (HT), an H2S scavenger, was provided to the control and Cr-S-plants along with CA and CA + NaHS. HT reduced the beneficial effects of CA by decreasing H2S production in tomato plants. However, the NaHS addition with CA + HT inverted the adverse impacts of HT, indicating that H2S is required for CA-induced Cr-S tolerance in tomato plants.


Assuntos
Sulfeto de Hidrogênio , Solanum lycopersicum , Sulfeto de Hidrogênio/farmacologia , Antioxidantes/metabolismo , Cromo/toxicidade , Ácido Cítrico/farmacologia , Peróxido de Hidrogênio/farmacologia , Glutationa/metabolismo , Fitoquelatinas , Plântula , Estresse Oxidativo
11.
Sci Total Environ ; 902: 165968, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37543321

RESUMO

Mining and smelting of mineral resources causes excessive accumulation of potentially toxic metals (PTMs) in surrounding soils. Here, biochar-based sulfidated nanoscale zero-valent iron (SNZVI/BC) was designed via a one-step liquid phase reduction method to immobilize cadmium (Cd) and zinc (Zn) in a copolluted arable soil. A 60 d soil incubation experiment revealed that Cd and Zn immobilization efficiency by 6 % SNZVI/BC (25.2-26.2 %) was higher than those by individual SNZVI (13.9-18.0 %) or biochar (14.0-19.3 %) based on the changes in diethylene triamine pentaacetic acid (DTPA)-extractable PTM concentrations in soils, exhibiting a synergistic effect. Cd2+ or Zn2+ replaced isomorphously Fe2+ in amorphous ferrous sulfide, as revealed by XRD, XPS, and high-resolution TEM-EDS, forming metal sulfide precipitates and thus immobilizing PTMs. PTM immobilization was further enhanced by adsorption by biochar and oxidation products (Fe2O3 and Fe3O4) of SNZVI via precipitation and surface complexation. SNZVI/BC also increased the concentration of dissolved organic carbon and soil pH, thus stimulating the abundances of beneficial bacteria, i.e., Bacilli, Clostridia, and Desulfuromonadia. These functional bacteria further facilitated microbial Fe(III) reduction, production of ammonium and available potassium, and immobilization of PTMs in soils. The predicted function of the soil microbial community was improved after supplementation with SNZVI/BC. Overall, SNZVI/BC could be a promising functional material that not only immobilized PTMs but also enhanced available nutrients in cocontaminated soils.


Assuntos
Cádmio , Poluentes do Solo , Cádmio/análise , Ferro/análise , Zinco , Carvão Vegetal , Solo , Poluentes do Solo/análise
12.
J Hazard Mater ; 458: 131982, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37413801

RESUMO

The contamination of potentially toxic elements (PTEs) in road dust of large industrial cities is extremely serious. Determining the priority risk control factors of PTE contamination in road dust is critical to enhance the environmental quality of such cities and mitigate the risk of PTE pollution. The Monte Carlo simulation (MCS) method and geographical models were employed to assess the probabilistic pollution levels and eco-health risks of PTEs originating from different sources in fine road dust (FRD) of large industrial cities, and to identify key factors affecting the spatial variability of priority control sources and target PTEs. It was observed that in FRD of Shijiazhuang, a typical large industrial city in China, more than 97% of the samples had an INI > 1 (INImean = 1.8), indicating moderately contaminated with PTEs. The eco-risk was at least considerable (NCRI >160) with more than 98% of the samples, mainly caused by Hg (Ei (mean) = 367.3). The coal-related industrial source (NCRI(mean) = 235.1) contributed 70.9% to the overall eco-risk (NCRI(mean) = 295.5) of source-oriented risks. The non-carcinogenic risk of children and adults are of less importance, but the carcinogenic risk deserves attention. The coal-related industry is a priority control pollution source for human health protection, with As corresponding to the target PTE. The major factors affecting the spatial changes of target PTEs (Hg and As) and coal-related industrial sources were plant distribution, population density, and gross domestic product. The hot spots of coal-related industrial sources in different regions were strongly interfered by various human activities. Our results illustrate spatial changes and key-influencing factors of priority source and target PTEs in Shijiazhuang FRD, which are helpful for environmental protection and control of environmental risks by PTEs.


Assuntos
Mercúrio , Metais Pesados , Poluentes do Solo , Criança , Adulto , Humanos , Cidades , Monitoramento Ambiental/métodos , Poeira/análise , Julgamento , Metais Pesados/análise , Medição de Risco , China , Carvão Mineral/análise , Poluentes do Solo/análise , Solo
13.
J Hazard Mater ; 457: 131862, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37329597

RESUMO

Melatonin (MT) has recently gained significant scientific interest, though its mechanism of action in enhancing plant vigor, cadmium (Cd) tolerance, and Cd phytoremediation processes are poorly understood. Therefore, here we investigated the beneficial role of MT in improving growth and Cd remediation potential of rapeseed (Brassica napus). Plants, with or without MT (200 µM L-1), were subjected to Cd stress (30 mg kg1). Without MT, higher Cd accumulation (up to 99%) negatively affected plant growth and developmental feature as well as altered expression of several key genes (DEGs) involved in different molecular pathways of B. napus. As compared to only Cd-stressed counterparts, MT-treated plants exhibited better physiological performance as indicated by improved leaf photosynthetic and gaseous exchange processes (3-48%) followed by plant growth (up to 50%), fresh plant biomass (up to 45%), dry plant biomass (up to 32%), and growth tolerance indices (up to 50%) under Cd exposure. MT application enhanced Cd tolerance and phytoremediation capacity of B. napus by augmenting (1) Cd accumulation in plant tissues and its translocation to above-ground parts (by up to 45.0%), (2) Cd distribution in the leaf cell wall (by up to 42%), and (3) Cd detoxification by elevating phytochelatins (by up to 8%) and metallothioneins (by upto 14%) biosynthesis, in comparison to Cd-treated plants. MT played a protective role in stabilizing hydrogen peroxide and malondialdehyde levels in the tissue of the Cd-treated plants by enhancing the content of osmolytes (proline and total soluble protein) and activities of antioxidant enzymes (SOD, CAT, APX and GR). Transcriptomic analysis revealed that MT regulated 1809 differentially expressed genes (828 up and 981 down) together with 297 commonly expressed DEGs (CK vs Cd and Cd vs CdMT groups) involved in plant-pathogen interaction pathway, protein processing in the endoplasmic reticulum pathway, mitogen-activated protein kinase signaling pathway, and plant hormone signal transduction pathway which ultimately promoted plant growth and Cd remediation potential in the Cd-stressed plants. These results provide insights into the unexplored pleiotropic beneficial action of MT in enhancing in the growth and Cd phytoextraction potential of B. napus, paving the way for developing Cd-tolerant oilseed crops with higher remediation capacity as a bioecological trial for enhancing phytoremediation of hazardous toxic metals in the environment.


Assuntos
Brassica napus , Melatonina , Poluentes do Solo , Cádmio/metabolismo , Melatonina/farmacologia , Brassica napus/metabolismo , Biodegradação Ambiental , Solo , Antioxidantes/metabolismo , Poluentes do Solo/metabolismo
14.
Environ Pollut ; 330: 121747, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37146870

RESUMO

Aminolevulinic acid (ALA) is essential for chlorophyll and heme synthesis. However, whether heme interacts with ALA to elicit antioxidants in arsenic (As)-exposed plants is still unknown. ALA was applied daily to pepper plants for 3 days prior to beginning As stress (As-S). Then, As-S was initiated for 14 days by employing sodium hydrogen arsenate heptahydrate (0.1 mM AsV). Arsenic treatment decreased photosynthetic pigments (chl a by 38% and chl b by 28%), biomass by 24%, and heme by 47% content, but it elevated contents of malondialdehyde (MDA) by 3.3-fold, hydrogen peroxide (H2O2) by 2.3-fold, glutathione (GSH), methylglyoxal (MG), and phytochelatins (PCs) and electrolyte leakage (EL) by 2.3-fold along with enhanced subcellular As concentration in the pepper plant's roots and leaves. The supplementation of ALA to the As-S-pepper seedlings enhanced the amount of chlorophyll, heme content, and antioxidant enzyme activity as well as plant growth, while it reduced the levels of H2O2, MDA, and EL. ALA boosted GSH and phytochelates (PCs) in the As-S-seedlings by controlling As sequestration and rendering it harmless. The addition of ALA enhanced the amount of As that accumulated in the root vacuoles and reduced the poisonousness of the soluble As in the vacuoles. The ALA treatment facilitated the deposition and fixation of As in the vacuoles and cell walls, thereby reducing the transport of As to other cell organelles. This mechanism may have contributed to the observed decrease in As accumulation in the leaves. The administration of 0.5 mM hemin (H) (a source of heme) significantly enhanced ALA-induced arsenic stress tolerance. Hemopexin (Hx, 0.4 µg L-1), a heme scavenger, was treated with the As-S plants along with ALA and ALA + H to observe if heme was a factor in ALA's increased As-S tolerance. Heme synthesis/accumulation in the pepper plants was reduced by Hx, which counteracted the positive effects of ALA. Supplementation of H along with ALA + Hx reversed the negative effects of Hx, demonstrating that heme is required for ALA-induced seedling As-S tolerance.


Assuntos
Arsênio , Arsênio/farmacologia , Ácido Aminolevulínico/farmacologia , Peróxido de Hidrogênio/farmacologia , Heme/farmacologia , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Clorofila , Glutationa/metabolismo , Plântula , Fitoquelatinas , Organelas , Estresse Oxidativo
15.
Environ Pollut ; 331(Pt 1): 121846, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37211225

RESUMO

Hyperaccumulator Amaranthus hypochondriacus L. has huge potential in the remediation of cadmium (Cd)-contaminated soils and is necessary to understand the mechanism of Cd uptake by the roots. In this study, the mechanism of Cd uptake into the root of A. hypochondriacus was investigated using the non-invasive micro-test technology (NMT) by analyzing the rate of Cd2+ fluxes at different regions of the root tip; also we assessed the impact of different channel blockers and inhibitors on the Cd accumulation in the roots, the real-time Cd2+ fluxes, and the distribution of Cd along the roots. The results showed that the Cd2+ influx was greater near the root tip (within 100 µm of the tip). All the inhibitors, ion-channel blockers, and metal cations had different degrees of inhibition on the absorption of Cd in the roots of A. hypochondriacus. The net Cd2+ flux in the roots was significantly decreased by the Ca2+ channel blockers lanthanum chloride (LaCl3) by up to 96% and verapamil by up to 93%; as for the K+ channel blocker tetraethylammonium (TEA), it also caused a 68%-reduction on the net Cd2+ flux in the roots. Therefore, we infer that the uptake by A. hypochondriacus roots is mainly through the Ca2+ channels. The Cd absorption mechanism appears to be related to the synthesis of plasma membrane P-type ATPase and phytochelatin (PC), which is reflected by the inhibition of Ca2+ upon addition of inorganic metal cations. In conclusion, access of Cd ions into the roots of A. hypochondriacus is achieved through various ion channels, with the most important being the Ca2+ channel. This study will further enhance the literature regarding Cd uptake and pathways of membrane transport in roots of Cd hyperaccumulators.


Assuntos
Amaranthus , Poluentes do Solo , Cádmio/análise , Amaranthus/metabolismo , Raízes de Plantas/metabolismo , Poluentes do Solo/análise , Metais/metabolismo , Biodegradação Ambiental
16.
Environ Pollut ; 327: 121523, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37003587

RESUMO

A comprehensive analysis of content, pollution characteristics, health hazard, distribution, and source of some broadly concerned potentially toxic elements (PTEs, Pb, V, Mn, Cr, Ba, Zn, Ni, and Cu) in surface fine dust with particle size <63 µm (SFD63) from residence communities in Xi'an, a representative valley industrial city, was conducted in this research to analyze the quality of environment and influencing factors of valley industrial cities in China. The average contents of Ba (794.1 mg kg-1), Cu (61.3 mg kg-1), Pb (99.9 mg kg-1), Zn (408.1 mg kg-1), Cr (110.0 mg kg-1), and Ni (33.4 mg kg-1) in SFD63 of Xi'an residence communities surpassed their background contents of local soil. The high enrichment-value regions of PTEs were chiefly located in the regions with high traffic flow, high population density, and areas around industries. Zn and Pb had moderate enrichment, and the overall pollution level of PTEs was unpolluted-to-moderate and moderate pollution. Three source categories (including natural geogenic source, industrial anthropogenic source, and mixed anthropogenic source of transportation, residential activities, and construction) were identified as the predominant sources for the PTEs pollution in SFD63, with the contribution levels of 29.9%, 32.4%, and 37.7%, respectively. The assessment of health risks according to Monte Carlo simulation revealed that the 95% of the non-cancer risk of PTEs to residents (the elderly, working people, and children) was less than the threshold of 1, while the probability of cancer risk exceeding the acceptable threshold of 1E-6 was 93.76% for children, 68.61% for the elderly, and 67.54% for working people. Industrial source was determined as priority pollution source and Cr was determined as priority pollutant, which should be concerned.


Assuntos
Poeira , Monitoramento Ambiental , Poluentes do Solo , Idoso , Criança , Humanos , China , Cidades , Poeira/análise , Chumbo/análise , Metais Pesados/análise , Metais Pesados/toxicidade , Medição de Risco , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
17.
Sci Total Environ ; 881: 163456, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37062308

RESUMO

Asbestos is a group of six major silicate minerals that belong to the serpentine and amphibole families, and include chrysotile, amosite, crocidolite, anthophyllite, tremolite and actinolite. Weathering and human disturbance of asbestos-containing materials (ACMs) can lead to the emission of asbestos dust, and the inhalation of respirable asbestos fibrous dust can lead to 'mesothelioma' cancer and other diseases, including the progressive lung disease called 'asbestosis'. There is a considerable legacy of in-situ ACMs in the built environment, and it is not practically or economically possible to safely remove ACMs from the built environment. The aim of the review is to examine the three approaches used for the sustainable management of hazardous ACMs in the built environment: containment, stabilization, and inertization or destruction. Most of the asbestos remaining in the built environment can be contained in a physically secured form so that it does not present a significant health risk of emitting toxic airborne fibres. In settings where safe removal is not practically feasible, stabilization and encapsulation can provide a promising solution, especially in areas where ACMs are exposed to weathering or disturbance. Complete destruction and inertization of asbestos can be achieved by thermal decomposition using plasma and microwave radiation. Bioremediation and chemical treatment (e.g., ultrasound with oxalic acid) have been found to be effective in the inertization of ACMs. Technologies that achieve complete destruction of ACMs are found to be attractive because the treated products can be recycled or safely disposed of in landfills.

18.
Environ Sci Technol ; 57(17): 7009-7017, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37010423

RESUMO

Discarded plastics and microplastics (MPs) in the environment are considered emerging contaminants and indicators of the Anthropocene epoch. This study reports the discovery of a new type of plastic material in the environment─plastic-rock complexes─formed when plastic debris irreversibly sorbs onto the parent rock after historical flooding events. These complexes consist of low-density polyethylene (LDPE) or polypropylene (PP) films stuck onto quartz-dominated mineral matrices. These plastic-rock complexes serve as hotspots for MP generation, as evidenced by laboratory wet-dry cycling tests. Over 1.03 × 108 and 1.28 × 108 items·m-2 MPs were generated in a zero-order mode from the LDPE- and PP-rock complexes, respectively, following 10 wet-dry cycles. The speed of MP generation was 4-5 orders of magnitude higher than that in landfills, 2-3 orders of magnitude higher than that in seawater, and >1 order of magnitude higher than that in marine sediment as compared with previously reported data. Results from this investigation provide strong direct evidence of anthropogenic waste entering geological cycles and inducing potential ecological risks that may be exacerbated by climate change conditions such as flooding events. Future research should evaluate this phenomenon regarding ecosystem fluxes, fate, and transport and impacts of plastic pollution.


Assuntos
Plásticos , Poluentes Químicos da Água , Microplásticos , Polietileno/análise , Ecossistema , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Polipropilenos/análise
19.
Sci Total Environ ; 876: 162770, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-36906028

RESUMO

The Environmental Protection Agencies (EPAs) of Denmark, Sweden, Norway, Germany and the Netherlands submitted a proposal to the European Chemical Agency (ECHA) in February 2023 calling for a ban in the use of toxic industrial chemicals per- and polyfluoroalkyl substances (PFAS). These chemicals are highly toxic causing elevated cholesterol, immune suppression, reproductive failure, cancer and neuro-endocrine disruption in humans and wildlife being a significant threat to biodiversity and human health. The main reason for the submitted proposal is recent findings of significant flaws in the transition to PFAS replacements that is leading to a widespread pollution. Denmark was the first country banning PFAS, and now other EU countries support the restrictions of these carcinogenic, endocrine disruptive and immunotoxic chemicals. The proposed plan is among the most extensive received by the ECHA for 50 years. Denmark is now the first EU country to initiate the establishment of groundwater parks to try and protect its drinking water. These parks are areas free of agricultural activities and nutritious sewage sludge to secure drinking water free of xenobiotic including PFAS. The PFAS pollution also reflects the lack of comprehensive spatial and temporal environmental monitoring programs in the EU. Such monitoring programs should include key indicator species across ecosystems of livestock, fish and wildlife, to facilitate detection of early ecological warning signals and sustain public health. Simultaneously with inferring a total PFAS ban, the EU should also push for more persistent, bioaccumulative and toxic (PBT) PFAS substances to be listed on the Stockholm Convention (SC) Annex A such as PFOS (perfluorooctane sulfonic acid) that is currently listed on the SCs Annex B. The combination of these regulative restrictions combined with groundwater parks and pan-European biomonitoring programs, would pave the way forward for a cleaner environment to sustain health across the EU.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Humanos , Ecossistema , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Poluição Ambiental/prevenção & controle , Monitoramento Ambiental , Ácidos Alcanossulfônicos/toxicidade , Ácidos Alcanossulfônicos/análise , Fluorocarbonos/toxicidade , Fluorocarbonos/análise
20.
Chemosphere ; 320: 138058, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36746249

RESUMO

Potentially toxic elements (PTEs) pose a great threat to ecosystems and long-term exposure causes adverse effects to wildlife and humans. Cadmium induces a variety of diseases including cancer, kidney dysfunction, bone lesions, anemia and hypertension. Here we review the ability of plants to accumulate cadmium from soil, air and water under different environmental conditions, focusing on absorption mechanisms and factors affecting these. Cadmium possess various transport mechanisms and pathways roughly divided into symplast and apoplast pathway. Excessive cadmium concentrations in the environment affects soil properties, pH and microorganism composition and function and thereby plant uptake. At the same time, plants resist cadmium toxicity by antioxidant reaction. The differences in cadmium absorption capacity of plants need more exploration to determine whether it is beneficial for crop breeding or genetic modification. Identify whether plants have the potential to become hyperaccumulator and avoid excessive cadmium uptake by edible plants. The use of activators such as wood vinegar, GLDA (Glutamic acid diacetic acid), or the placement of earthworms and fungi can speed up phytoremediation of plants, thereby reducing uptake of crop varieties and reducing human exposure, thus accelerating food safety and the health of the planet.


Assuntos
Cádmio , Poluentes do Solo , Humanos , Cádmio/análise , Biodegradação Ambiental , Solo/química , Ecossistema , Água , Poluentes do Solo/análise , Melhoramento Vegetal , Plantas Comestíveis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA