Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(15)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37568820

RESUMO

Receptor activator of nuclear factor-κB ligand (RANKL) is critically involved in mammary gland pathophysiology, while its pharmaceutical inhibition is being currently investigated in breast cancer. Herein, we investigated whether the overexpression of human RANKL in transgenic mice affects hormone-induced mammary carcinogenesis, and evaluated the efficacy of anti-RANKL treatments, such as OPG-Fc targeting both human and mouse RANKL or Denosumab against human RANKL. We established novel MPA/DMBA-driven mammary carcinogenesis models in TgRANKL mice that express both human and mouse RANKL, as well as in humanized humTgRANKL mice expressing only human RANKL, and compared them to MPA/DMBA-treated wild-type (WT) mice. Our results show that TgRANKL and WT mice have similar levels of susceptibility to mammary carcinogenesis, while OPG-Fc treatment restored mammary ductal density, and prevented ductal branching and the formation of neoplastic foci in both genotypes. humTgRANKL mice also developed MPA/DMBA-induced tumors with similar incidence and burden to those of WT and TgRANKL mice. The prophylactic treatment of humTgRANKL mice with Denosumab significantly prevented the rate of appearance of mammary tumors from 86.7% to 15.4% and the early stages of carcinogenesis, whereas therapeutic treatment did not lead to any significant attenuation of tumor incidence or tumor burden compared to control mice, suggesting the importance of RANKL primarily in the initial stages of tumorigenesis. Overall, we provide unique genetic tools for investigating the involvement of RANKL in breast carcinogenesis, and allow the preclinical evaluation of novel therapeutics that target hormone-related breast cancers.

2.
Int J Mol Sci ; 24(14)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37511048

RESUMO

Receptor activator of nuclear factor-κB ligand (RANKL) has been actively pursued as a therapeutic target for osteoporosis, given that RANKL is the master mediator of bone resorption as it promotes osteoclast differentiation, activity and survival. We employed a structure-based virtual screening approach comprising two stages of experimental evaluation and identified 11 commercially available compounds that displayed dose-dependent inhibition of osteoclastogenesis. Their inhibitory effects were quantified through TRAP activity at the low micromolar range (IC50 < 5 µΜ), but more importantly, 3 compounds displayed very low toxicity (LC50 > 100 µΜ). We also assessed the potential of an N-(1-aryl-1H-indol-5-yl)aryl-sulfonamide scaffold that was based on the structure of a hit compound, through synthesis of 30 derivatives. Their evaluation revealed 4 additional hits that inhibited osteoclastogenesis at low micromolar concentrations; however, cellular toxicity concerns preclude their further development. Taken together with the structure-activity relationships provided by the hit compounds, our study revealed potent inhibitors of RANKL-induced osteoclastogenesis of high therapeutic index, which bear diverse scaffolds that can be employed in hit-to-lead optimization for the development of therapeutics against osteolytic diseases.


Assuntos
Reabsorção Óssea , Osteogênese , Ligante RANK , Humanos , Reabsorção Óssea/tratamento farmacológico , Diferenciação Celular , Proteínas I-kappa B , NF-kappa B/farmacologia , Fatores de Transcrição NFATC , Osteoclastos , Osteogênese/efeitos dos fármacos , Ligante RANK/antagonistas & inibidores , Relação Estrutura-Atividade
3.
J Med Imaging (Bellingham) ; 10(Suppl 2): S22402, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36825256

RESUMO

Purpose: Even though current techniques provide two-dimensional (2D) imaging of the mouse mammary gland, they fail to achieve high-resolution three-dimensional (3D) reconstruction and quantification. The objective of this study is to establish and evaluate quantitative visualization of the mouse mammary epithelium through microcomputed tomography (microCT) using phosphotungstic acid (PTA) as a contrast agent. Approach: Ex vivo microCT scan images of the mouse mammary glands were obtained following staining by PTA, whereas for quantification we adapted volumetric parameters that are used for assessing trabecular bone morphometry and can be structurally applicable in the mammary ductal system. The proposed method was validated in distinct developmental stages and upon short-term treatment with synthetic progesterone, using the carmine alum staining for comparison. Results: We demonstrate a simple PTA staining procedure that allows high contrast 3D imaging of mammary glands and quantitation of mammary duct structures using microCT. We validated the proposed method in distinct developmental stages, such as at puberty, adult mice, pregnancy as well as upon progesterone treatment. Compared with carmine alum staining, the microCT analysis provided higher resolution 2D and 3D images of the mammary gland morphology, with lower background that enabled the detection of subtle changes. Conclusions: This work is the first study that employs PTA-enhanced microCT for 3D imaging and volumetric analysis of mouse mammary glands. Our results establish PTA-enhanced microCT as a useful tool for comparative studies of the mouse mammary gland morphology that can apply in mutant mice and for the preclinical evaluation of pharmaceuticals in breast cancer models.

4.
J Med Chem ; 63(20): 12043-12059, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32955874

RESUMO

Receptor activator of nuclear factor-κB ligand (RANKL) constitutes the master mediator of osteoclastogenesis, while its pharmaceutical inhibition by a monoclonal antibody has been approved for the treatment of postmenopausal osteoporosis. To date, the pursuit of pharmacologically more favorable approaches using low-molecular-weight inhibitors has been hampered by low specificity and high toxicity issues. This study aimed to discover small-molecule inhibitors targeting RANKL trimer formation. Through a systematic screening of 39 analogues of SPD-304, a dual inhibitor of tumor necrosis factor (TNF) and RANKL trimerization, we identified four compounds (1b, 3b, 4a, and 4c) that selectively inhibited RANKL-induced osteoclastogenesis in a dose-dependent manner, without affecting TNF activity or osteoblast differentiation. Based on structure-activity observations extracted from the most potent and less toxic inhibitors of RANKL-induced osteoclastogenesis, we synthesized a focused set of compounds that revealed three potent inhibitors (19a, 19b, and 20a) with remarkably low cell-toxicity and improved therapeutic indexes as shown by the LC50 to IC50 ratio. These RANKL-selective inhibitors are an excellent starting point for the development of small-molecule therapeutics against osteolytic diseases.


Assuntos
Cromanos/farmacologia , Descoberta de Drogas , Indóis/farmacologia , Ligante RANK/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Cromanos/síntese química , Cromanos/química , Relação Dose-Resposta a Droga , Humanos , Indóis/síntese química , Indóis/química , Ligantes , Camundongos , Simulação de Dinâmica Molecular , Estrutura Molecular , Osteogênese , Ligante RANK/metabolismo , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Índice Terapêutico
5.
Front Immunol ; 10: 97, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30804932

RESUMO

Receptor activator of nuclear factor-κB ligand (RANKL), a member of the Tumor Necrosis Factor (TNF) superfamily, constitutes the master regulator of osteoclast formation and bone resorption, whereas its involvement in inflammatory diseases remains unclear. Here, we used the human TNF transgenic mouse model of erosive inflammatory arthritis to determine if the progression of inflammation is affected by either genetic inactivation or overexpression of RANKL in transgenic mouse models. TNF-mediated inflammatory arthritis was significantly attenuated in the absence of functional RANKL. Notably, TNF overexpression could not compensate for RANKL-mediated osteopetrosis, but promoted osteoclastogenesis between the pannus and bone interface, suggesting RANKL-independent mechanisms of osteoclastogenesis in inflamed joints. On the other hand, simultaneous overexpression of RANKL and TNF in double transgenic mice accelerated disease onset and led to severe arthritis characterized by significantly elevated clinical and histological scores as shown by aggressive pannus formation, extended bone resorption, and massive accumulation of inflammatory cells, mainly of myeloid origin. RANKL and TNF cooperated not only in local bone loss identified in the inflamed calcaneous bone, but also systemically in distal femurs as shown by microCT analysis. Proteomic analysis in inflamed ankles from double transgenic mice overexpressing human TNF and RANKL showed an abundance of proteins involved in osteoclastogenesis, pro-inflammatory processes, gene expression regulation, and cell proliferation, while proteins participating in basic metabolic processes were downregulated compared to TNF and RANKL single transgenic mice. Collectively, these results suggest that RANKL modulates modeled inflammatory arthritis not only as a mediator of osteoclastogenesis and bone resorption but also as a disease modifier affecting inflammation and immune activation.


Assuntos
Artrite/imunologia , Inflamação/imunologia , Células Mieloides/imunologia , Ligante RANK/genética , Fator de Necrose Tumoral alfa/genética , Animais , Reabsorção Óssea , Modelos Animais de Doenças , Humanos , Imunomodulação , Camundongos , Camundongos Transgênicos , Osteogênese/genética , Osteopetrose/genética , Proteômica , Ligante RANK/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
6.
Front Pharmacol ; 9: 800, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30090063

RESUMO

An in silico drug discovery pipeline for the virtual screening of plant-origin natural products (NPs) was developed to explore new direct inhibitors of TNF and its close relative receptor activator of nuclear factor kappa-B ligand (RANKL), both representing attractive therapeutic targets for many chronic inflammatory conditions. Direct TNF inhibition through identification of potent small molecules is a highly desired goal; however, it is often hampered by severe limitations. Our approach yielded a priority list of 15 NPs as potential direct TNF inhibitors that were subsequently tested in vitro against TNF and RANKL. We thus identified two potent direct inhibitors of TNF function with low micromolar IC50 values and minimal toxicity even at high concentrations. Most importantly, one of them (A11) was proved to be a dual inhibitor of both TNF and RANKL. Extended molecular dynamics simulations with the fully automated EnalosMD suite rationalized the mode of action of the compounds at the molecular level. To our knowledge, these compounds constitute the first NP TNF inhibitors, one of which being the first NP small-molecule dual inhibitor of TNF and RANKL, and could serve as lead compounds for the development of novel treatments for inflammatory and autoimmune diseases.

7.
Curr Top Med Chem ; 18(8): 661-673, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29875003

RESUMO

The overexpression of Tumor Necrosis Factor (TNF) is directly related to the development of several autoimmune diseases, such as rheumatoid and psoriatic arthritis, inflammatory bowel disease, Crohn's disease, refractory asthma, and multiple sclerosis. Receptor Activator of Nuclear Factor Kappa- B Ligand (RANKL) belongs to the TNF family and is the primary mediator of osteoclast-induced bone resorption through interaction with its receptor RANK. The function of RANKL is physiologically inhibited by the action of osteoprotegerin (OPG), which is a decoy receptor that binds to RANKL and prevents the process of osteoclastogenesis. Malfunction among RANK/RANKL/OPG can also result in bone loss diseases, including postmenopausal osteoporosis, rheumatoid arthritis, bone metastasis and multiple myeloma. To disrupt the unwanted functions of TNF and RANKL, current attempts focus on blocking TNF and RANKL binding to their receptors. In this review, we present the research efforts toward the development of low-molecular-weight pharmaceuticals that directly block the detrimental actions of TNF and RANKL.


Assuntos
Receptor Ativador de Fator Nuclear kappa-B/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Inibidores do Fator de Necrose Tumoral , Animais , Humanos , Ligantes , Modelos Moleculares , Peso Molecular , Ligação Proteica/efeitos dos fármacos , Receptor Ativador de Fator Nuclear kappa-B/química , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Fatores de Necrose Tumoral/química
8.
PLoS Comput Biol ; 13(4): e1005372, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28426652

RESUMO

We present an in silico drug discovery pipeline developed and applied for the identification and virtual screening of small-molecule Protein-Protein Interaction (PPI) compounds that act as dual inhibitors of TNF and RANKL through the trimerization interface. The cheminformatics part of the pipeline was developed by combining structure-based with ligand-based modeling using the largest available set of known TNF inhibitors in the literature (2481 small molecules). To facilitate virtual screening, the consensus predictive model was made freely available at: http://enalos.insilicotox.com/TNFPubChem/. We thus generated a priority list of nine small molecules as candidates for direct TNF function inhibition. In vitro evaluation of these compounds led to the selection of two small molecules that act as potent direct inhibitors of TNF function, with IC50 values comparable to those of a previously-described direct inhibitor (SPD304), but with significantly reduced toxicity. These molecules were also identified as RANKL inhibitors and validated in vitro with respect to this second functionality. Direct binding of the two compounds was confirmed both for TNF and RANKL, as well as their ability to inhibit the biologically-active trimer forms. Molecular dynamics calculations were also carried out for the two small molecules in each protein to offer additional insight into the interactions that govern TNF and RANKL complex formation. To our knowledge, these compounds, namely T8 and T23, constitute the second and third published examples of dual small-molecule direct function inhibitors of TNF and RANKL, and could serve as lead compounds for the development of novel treatments for inflammatory and autoimmune diseases.


Assuntos
Descoberta de Drogas/métodos , Domínios e Motivos de Interação entre Proteínas/efeitos dos fármacos , Ligante RANK/antagonistas & inibidores , Ligante RANK/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Células da Medula Óssea , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Simulação por Computador , Humanos , Ligantes , Camundongos
9.
Bioorg Med Chem ; 22(15): 3957-70, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25002233

RESUMO

The MDR-involved human GSTA1-1, an important isoenzyme overexpressed in several tumors leading to chemotherapeutic-resistant tumour cells, has been targeted by 2,2'-dihydroxybenzophenones and some of their carbonyl N-analogues, as its potential inhibitors. A structure-based library of the latter was built-up by a nucleophilic cleavage of suitably substituted xanthones to 2,2'-dihydroxy-benzophenones (5-9) and subsequent formation of their N-derivatives (oximes 11-13 and N-acyl hydrazones 14-16). Screening against hGSTA1-1 led to benzophenones 6 and 8, and hydrazones 14 and 16, having the highest inhibition potency (IC50 values in the range 0.18 ± 0.02 to 1.77 ± 0.10 µM). Enzyme inhibition kinetics, molecular modeling and docking studies showed that they interact primarily at the CDNB-binding catalytic site of the enzyme. In addition, the results from cytotoxicity studies with human colon adenocarcinoma cells showed low LC50 values for benzophenone 6 and its N-acyl hydrazone analogue 14 (31.4 ± 0.4 µM and 87 ± 1.9 µM, respectively), in addition to the strong enzyme inhibition profile (IC50(6)=1,77 ± 0.10 µM; IC50(14)=0.33 ± 0.05 µM). These structures may serve as leads for the design of new potent mono- and bi-functional inhibitors and pro-drugs against human GTSs.


Assuntos
Benzofenonas/química , Inibidores Enzimáticos/química , Glutationa Transferase/antagonistas & inibidores , Isoenzimas/antagonistas & inibidores , Benzofenonas/metabolismo , Benzofenonas/toxicidade , Sítios de Ligação , Domínio Catalítico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/toxicidade , Glutationa Transferase/metabolismo , Humanos , Isoenzimas/metabolismo , Cinética , Simulação de Acoplamento Molecular , Ligação Proteica , Relação Estrutura-Atividade , Termodinâmica
10.
J Bone Miner Res ; 29(5): 1158-69, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24127173

RESUMO

Receptor activator of NF-κB ligand (RANKL) plays a key role in osteoclast-induced bone resorption across a range of degenerative bone diseases, and its specific inhibition has been recently approved as a treatment for women with postmenopausal osteoporosis at high or increased risk of fracture in the United States and globally. In the present study, we generated transgenic mice (TghuRANKL) carrying the human RANKL (huRANKL) genomic region and achieved a physiologically relevant pattern of RANKL overexpression in order to establish novel genetic models for assessing skeletal and extraskeletal pathologies associated with excessive RANKL and for testing clinical therapeutic candidates that inhibit human RANKL. TghuRANKL mice of both sexes developed early-onset bone loss, and the levels of huRANKL expression were correlated with bone resorption and disease severity. Low copy Tg5516 mice expressing huRANKL at low levels displayed a mild osteoporotic phenotype as shown by trabecular bone loss and reduced biomechanical properties. Notably, overexpression of huRANKL, in the medium copy Tg5519 line, resulted in severe early-onset osteoporosis characterized by lack of trabecular bone, destruction of the growth plate, increased osteoclastogenesis, bone marrow adiposity, increased bone remodeling, and severe cortical bone porosity accompanied by decreased bone strength. An even more severe skeletal phenotype developed in the high copy Tg5520 founder with extensive soft tissue calcification. Model validation was further established by evidence that denosumab, an antibody that inhibits human but not murine RANKL, fully corrected the hyper-resorptive and osteoporotic phenotypes of Tg5519 mice. Furthermore, overexpression of huRANKL rescued osteopetrotic phenotypes of RANKL-defective mice. These novel huRANKL transgenic models of osteoporosis represent an important advance for understanding the pathogenesis and treatment of high-turnover bone diseases and other disease states caused by excessive RANKL.


Assuntos
Regulação da Expressão Gênica , Osteoporose/genética , Osteoporose/metabolismo , Ligante RANK/biossíntese , Animais , Calcinose/genética , Calcinose/metabolismo , Calcinose/patologia , Modelos Animais de Doenças , Feminino , Lâmina de Crescimento/metabolismo , Lâmina de Crescimento/patologia , Humanos , Camundongos , Camundongos Transgênicos , Modelos Genéticos , Osteoclastos/patologia , Osteopetrose/genética , Osteopetrose/metabolismo , Osteopetrose/patologia , Osteoporose/patologia , Ligante RANK/genética
11.
J Biomol Screen ; 18(9): 1092-102, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23749766

RESUMO

Glutathione transferases (GSTs) are cell detoxifiers involved in multiple drug resistance (MDR), hampering the effectiveness of certain anticancer drugs. To our knowledge, this is the first report on well-defined synthetic xanthones as GST inhibitors. Screening 18 xanthones revealed three derivatives bearing a bromomethyl and a methyl group (7) or two bromomethyl groups (8) or an aldehyde group (17), with high inhibition potency (>85%), manifested by low IC(50) values (7: 1.59 ± 0.25 µM, 8: 5.30 ± 0.30 µM, and 17: 8.56 ± 0.14 µM) and a competitive modality of inhibition versus CDNB (Ki(7) = 0.76 ± 0.18 and Ki(17) = 1.69 ± 0.08 µM). Of them, derivative 17 readily inhibited hGSTA1-1 in colon cancer cell lysate (IC(50) = 10.54 ± 2.41 µM). Furthermore, all three derivatives were cytotoxic to Caco-2 intact cells, with 17 being the least cytotoxic (LC(50) = 151.3 ± 16.3 µM). The xanthone scaffold may be regarded as a pharmacophore for hGSTA1-1 and the three derivatives, especially 17, as potent precursors for the synthesis of new inhibitors and conjugate prodrugs for human GSTs.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Glutationa Transferase/antagonistas & inibidores , Xantonas/farmacologia , Antineoplásicos/síntese química , Ligação Competitiva , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Compostos de Diazônio/farmacologia , Relação Dose-Resposta a Droga , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Ensaios Enzimáticos , Inibidores Enzimáticos/síntese química , Glutationa Transferase/metabolismo , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Simulação de Acoplamento Molecular , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Xantonas/síntese química
12.
Protein Expr Purif ; 90(1): 9-19, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23623854

RESUMO

Receptor activator of nuclear factor-κB (RANK) and its cognate ligand (RANKL) is a member of the TNF superfamily of cytokines which is essential in osteobiology and its overexpression has been implicated in the pathogenesis of bone degenerative diseases such as osteoporosis. Therefore, RANKL is considered a major therapeutic target for the suppression of bone resorption in bone metabolic diseases such as rheumatoid arthritis and cancer metastasis. To evaluate the inhibitory effect of potential RANKL inhibitors a sufficient amount of protein is required. In this work RANKL was cloned for expression at high levels in Escherichia coli with the interaction of changing cultures conditions in order to produce the protein in a soluble form. In an initial step, the effect of expression host on soluble protein production was investigated and BL21(DE3) pLysS was the most efficient one found for the production of RANKL. Central composite design experiment in the following revealed that cell density before induction, IPTG concentration, post-induction temperature and time as well as their interactions had a significant influence on soluble RANKL production. An 80% increase of protein production was achieved after the determination of the optimum induction conditions: OD600nm before induction 0.55, an IPTG concentration of 0.3mM, a post-induction temperature of 25°C and a post-induction time of 6.5h. Following RANKL purification the thermal stability of the protein was studied. The interaction of RANKL with SPD304, a patented small-molecule inhibitor of TNF-α, was also studied in a fluorescence binding assay resulting in a Kd value of 14.1 ± 0.5 µM.


Assuntos
Escherichia coli/genética , Ligante RANK/genética , Cromanos/farmacologia , Escherichia coli/metabolismo , Humanos , Indóis/farmacologia , Isopropiltiogalactosídeo/metabolismo , Desnaturação Proteica , Estabilidade Proteica , Ligante RANK/isolamento & purificação , Ligante RANK/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo
13.
Hum Mol Genet ; 21(4): 784-98, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22068587

RESUMO

Receptor activator of nuclear factor-κB ligand (RANKL), a trimeric tumor necrosis factor (TNF) superfamily member, is the central mediator of osteoclast formation and bone resorption. Functional mutations in RANKL lead to human autosomal recessive osteopetrosis (ARO), whereas RANKL overexpression has been implicated in the pathogenesis of bone degenerative diseases such as osteoporosis. Following a forward genetics approach using N-ethyl-N-nitrosourea (ENU)-mediated random mutagenesis, we generated a novel mouse model of ARO caused by a new loss-of-function allele of Rankl with a glycine-to-arginine mutation at codon 278 (G278R) at the extracellular inner hydrophobic F ß-strand of RANKL. Mutant mice develop severe osteopetrosis similar to Rankl-deficient mice, whereas exogenous administration of recombinant RANKL restores osteoclast formation in vivo. We show that RANKL(G278R) monomers fail to assemble into homotrimers, are unable to bind and activate the RANK receptor and interact with wild-type RANKL exerting a dominant-negative effect on its trimerization and function in vitro. Since G278 is highly conserved within the TNF superfamily, we identified that a similar substitution in TNF, G122R, also abrogated trimerization, binding to TNF receptor and consequently impaired TNF biological activity. Notably, SPD304, a potent small-molecule inhibitor of TNF trimerization that interacts with G122, also inhibited RANKL activity, suggesting analogous inhibitory mechanisms. Our results provide a new disease model for ARO and identify a functional amino acid in the TNF-like core domain essential for trimer formation both in RANKL and in TNF that could be considered a novel potential target for inhibiting their biological activities.


Assuntos
Substituição de Aminoácidos/genética , Osteopetrose/genética , Mutação Puntual/genética , Multimerização Proteica/genética , Ligante RANK/genética , Ligante RANK/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Modelos Animais de Doenças , Etilnitrosoureia , Genes Dominantes/genética , Camundongos , Mutação de Sentido Incorreto/genética , Osteoclastos/citologia , Osteoclastos/metabolismo , Osteopetrose/induzido quimicamente , Ligação Proteica , Ligante RANK/antagonistas & inibidores , Ligante RANK/química , Receptor Ativador de Fator Nuclear kappa-B/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA