Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 326(6): H1337-H1349, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38551482

RESUMO

Nicotine is the primary addictive component of tobacco products. Through its actions on the heart and autonomic nervous system, nicotine exposure is associated with electrophysiological changes and increased arrhythmia susceptibility. To assess the underlying mechanisms, we treated rabbits with transdermal nicotine (NIC, 21 mg/day) or control (CT) patches for 28 days before performing dual optical mapping of transmembrane potential (RH237) and intracellular Ca2+ (Rhod-2 AM) in isolated hearts with intact sympathetic innervation. Sympathetic nerve stimulation (SNS) was performed at the first to third thoracic vertebrae, and ß-adrenergic responsiveness was additionally evaluated following norepinephrine (NE) perfusion. Baseline ex vivo heart rate (HR) and SNS stimulation threshold were higher in NIC versus CT (P = 0.004 and P = 0.003, respectively). Action potential duration alternans emerged at longer pacing cycle lengths (PCL) in NIC versus CT at baseline (P = 0.002) and during SNS (P = 0.0003), with similar results obtained for Ca2+ transient alternans. SNS shortened the PCL at which alternans emerged in CT but not in NIC hearts. NIC-exposed hearts tended to have slower and reduced HR responses to NE perfusion, but ventricular responses to NE were comparable between groups. Although fibrosis was unaltered, NIC hearts had lower sympathetic nerve density (P = 0.03) but no difference in NE content versus CT. These results suggest both sympathetic hypoinnervation of the myocardium and regional differences in ß-adrenergic responsiveness with NIC. This autonomic remodeling may contribute to the increased risk of arrhythmias associated with nicotine exposure, which may be further exacerbated with long-term use.NEW & NOTEWORTHY Here, we show that chronic nicotine exposure was associated with increased heart rate, increased susceptibility to alternans, and reduced sympathetic electrophysiological responses in the intact rabbit heart. We suggest that this was due to sympathetic hypoinnervation of the myocardium and diminished ß-adrenergic responsiveness of the sinoatrial node following nicotine treatment. Though these differences did not result in increased arrhythmia propensity in our study, we hypothesize that prolonged nicotine exposure may exacerbate this proarrhythmic remodeling.


Assuntos
Potenciais de Ação , Frequência Cardíaca , Coração , Nicotina , Sistema Nervoso Simpático , Animais , Nicotina/toxicidade , Nicotina/efeitos adversos , Coelhos , Frequência Cardíaca/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Coração/inervação , Coração/efeitos dos fármacos , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/fisiopatologia , Masculino , Agonistas Nicotínicos/toxicidade , Agonistas Nicotínicos/administração & dosagem , Sinalização do Cálcio/efeitos dos fármacos , Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/metabolismo , Adesivo Transdérmico , Preparação de Coração Isolado , Administração Cutânea , Norepinefrina/metabolismo
2.
bioRxiv ; 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38045290

RESUMO

Nicotine is the primary addictive component in tobacco products. Through its actions on the heart and autonomic nervous system, nicotine exposure is associated with electrophysiological changes and increased arrhythmia susceptibility. However, the underlying mechanisms are unclear. To address this, we treated rabbits with transdermal nicotine (NIC, 21 mg/day) or control (CT) patches for 28 days prior to performing dual optical mapping of transmembrane potential (RH237) and intracellular Ca 2+ (Rhod-2 AM) in isolated hearts with intact sympathetic innervation. Sympathetic nerve stimulation (SNS) was performed at the 1 st - 3 rd thoracic vertebrae, and ß-adrenergic responsiveness was additionally evaluated as changes in heart rate (HR) following norepinephrine (NE) perfusion. Baseline ex vivo HR and SNS stimulation threshold were increased in NIC vs. CT ( P = 0.004 and P = 0.003 respectively). Action potential duration alternans emerged at longer pacing cycle lengths (PCL) in NIC vs. CT at baseline ( P = 0.002) and during SNS ( P = 0.0003), with similar results obtained for Ca 2+ transient alternans. SNS reduced the PCL at which alternans emerged in CT but not NIC hearts. NIC exposed hearts also tended to have slower and reduced HR responses to NE perfusion. While fibrosis was unaltered, NIC hearts had lower sympathetic nerve density ( P = 0.03) but no difference in NE content vs. CT. These results suggest both sympathetic hypo-innervation of the myocardium and diminished ß-adrenergic responsiveness with NIC. This autonomic remodeling may underlie the increased risk of arrhythmias associated with nicotine exposure, which may be further exacerbated with continued long-term usage. NEW & NOTEWORTHY: Here we show that chronic nicotine exposure was associated with increased heart rate, lower threshold for alternans and reduced sympathetic electrophysiological responses in the intact rabbit heart. We suggest that this was due to the sympathetic hypo-innervation of the myocardium and diminished ß- adrenergic responsiveness observed following nicotine treatment. Though these differences did not result in increased arrhythmia propensity in our study, we hypothesize that prolonged nicotine exposure may exacerbate this pro-arrhythmic remodeling.

3.
Sci Adv ; 9(3): eadd5799, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36662864

RESUMO

Cyclic adenosine 3',5'-monophosphate (cAMP) is a key second messenger in cardiomyocytes responsible for transducing autonomic signals into downstream electrophysiological responses. Previous studies have shown intracellular heterogeneity and compartmentalization of cAMP signaling. However, whether cAMP signaling occurs heterogeneously throughout the intact heart and how this drives sex-dependent functional responses are unknown. Here, we developed and validated a novel cardiac-specific fluorescence resonance energy transfer-based cAMP reporter mouse and a combined voltage-cAMP whole-heart imaging system. We showed that in male hearts, cAMP was uniformly activated in response to pharmacological ß-adrenergic stimulation. In contrast, female hearts showed that cAMP levels decayed faster in apical versus basal regions, which was associated with nonuniform action potential changes and notable changes in the direction of repolarization. Apical phosphodiesterase (PDE) activity was higher in female versus male hearts, and PDE inhibition prevented repolarization changes in female hearts. Thus, our imaging approach revealed sex-dependent regional breakdown of cAMP and associated electrophysiological differences.


Assuntos
AMP Cíclico , Transdução de Sinais , Camundongos , Masculino , Feminino , Animais , AMP Cíclico/metabolismo , Cinética , Miócitos Cardíacos/metabolismo , Imagem Óptica
5.
J Orthop Res ; 39(4): 739-749, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32965732

RESUMO

Myocardial infarction (MI) and osteoporotic fracture are leading causes of morbidity and mortality, and epidemiological evidence linking their incidence suggests possible crosstalk. MI can exacerbate atherosclerosis through the sympathetic nervous system (SNS) activation and ß3 adrenoreceptor-mediated release of hematopoietic stem cells, leading to monocytosis. We hypothesized that this same pathway initiates systemic bone loss following MI, since osteoclasts differentiate from monocytes. In this study, MI was created with left anterior descending artery ligation in 12-week-old male mice (n = 24) randomized to ß3 -adrenergic receptor (AR) antagonist (SR 59230A) treatment or no treatment for 10 days postoperatively. Additional mice (n = 21, treated and untreated) served as unoperated controls. Bone mineral density (BMD), bone mineral content (BMC), and body composition were quantified at baseline and 10 days post-MI using dual-energy x-ray absorptiometry; circulating monocyte levels were quantified and the L5 vertebral body and femur were analyzed with microcomputed tomography 10 days post-MI. We found that MI led to circulating monocyte levels increases, BMD and BMC decreases at the femur and lumbar spine in MI mice (-6.9% femur BMD, -3.5% lumbar BMD), and trabecular bone volume decreases in MI mice compared with control mice. ß3 -AR antagonist treatment appeared to diminish the bone loss response (-5.3% femur BMD, -1.2% lumbar BMD), though these results were somewhat inconsistent. Clinical significance: These results suggest that MI leads to systemic bone loss, but that the SNS may not be a primary modulator of this response; bone loss and increased fracture risk may be important clinical comorbidities following MI or other ischemic injuries.


Assuntos
Doenças Ósseas Metabólicas/complicações , Infarto do Miocárdio/complicações , Fraturas por Osteoporose/complicações , Absorciometria de Fóton , Animais , Composição Corporal , Densidade Óssea , Fêmur/patologia , Células-Tronco Hematopoéticas/metabolismo , Vértebras Lombares/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Osteoclastos/metabolismo , Propanolaminas/farmacologia , Receptores Adrenérgicos beta 3/metabolismo , Estresse Mecânico , Sistema Nervoso Simpático , Microtomografia por Raio-X
6.
Sci Rep ; 10(1): 18801, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33139790

RESUMO

Myocardial infarction (MI) can result in sympathetic nerve loss in the infarct region. However, the contribution of hypo-innervation to electrophysiological remodeling, independent from MI-induced ischemia and fibrosis, has not been comprehensively investigated. We present a novel mouse model of regional cardiac sympathetic hypo-innervation utilizing a targeted-toxin (dopamine beta-hydroxylase antibody conjugated to saporin, DBH-Sap), and measure resulting electrophysiological and Ca2+ handling dynamics. Five days post-surgery, sympathetic nerve density was reduced in the anterior left ventricular epicardium of DBH-Sap hearts compared to control. In Langendorff-perfused hearts, there were no differences in mean action potential duration (APD80) between groups; however, isoproterenol (ISO) significantly shortened APD80 in DBH-Sap but not control hearts, resulting in a significant increase in APD80 dispersion in the DBH-Sap group. ISO also produced spontaneous diastolic Ca2+ elevation in DBH-Sap but not control hearts. In innervated hearts, sympathetic nerve stimulation (SNS) increased heart rate to a lesser degree in DBH-Sap hearts compared to control. Additionally, SNS produced APD80 prolongation in the apex of control but not DBH-Sap hearts. These results suggest that hypo-innervated hearts have regional super-sensitivity to circulating adrenergic stimulation (ISO), while having blunted responses to SNS, providing important insight into the mechanisms of arrhythmogenesis following sympathetic nerve loss.


Assuntos
Eletrofisiologia Cardíaca , Coração/inervação , Receptores Adrenérgicos beta/fisiologia , Sistema Nervoso Simpático/patologia , Sistema Nervoso Simpático/fisiopatologia , Potenciais de Ação/efeitos dos fármacos , Animais , Arritmias Cardíacas/etiologia , Cálcio/metabolismo , Isoproterenol/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/metabolismo
7.
Am J Physiol Heart Circ Physiol ; 318(3): H558-H565, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31975627

RESUMO

Cardiac sympathetic nerves undergo cholinergic transdifferentiation following reperfused myocardial infarction (MI), whereby the sympathetic nerves release both norepinephrine (NE) and acetylcholine (ACh). The functional electrophysiological consequences of post-MI transdifferentiation have never been explored. We performed MI or sham surgery in wild-type (WT) mice and mice in which choline acetyltransferase was deleted from adult noradrenergic neurons [knockout (KO)]. Electrophysiological activity was assessed with optical mapping of action potentials (AP) and intracellular Ca2+ transients (CaT) in innervated Langendorff-perfused hearts. KO MI hearts had similar NE content but reduced ACh content compared with WT MI hearts (0.360 ± 0.074 vs. 0.493 ± 0.087 pmol/mg; KO, n = 6; WT, n = 4; P < 0.05). KO MI hearts also had higher basal ex vivo heart rates versus WT MI hearts (328.5 ± 35.3 vs. 247.4 ± 62.4 beats/min; KO, n = 8; WT, n = 6; P < 0.05). AP duration at 80% repolarization was significantly shorter in the remote and border zones of KO MI versus WT MI hearts, whereas AP durations (APDs) were similar in infarct regions. This APD heterogeneity resulted in increased APD dispersion in the KO MI versus WT MI hearts (11.9 ± 2.7 vs. 8.2 ± 2.3 ms; KO, n = 8; WT, n = 6; P < 0.05), which was eliminated with atropine. CaT duration at 80% and CaT alternans magnitude were similar between groups both with and without sympathetic nerve stimulation. These results indicate that cholinergic transdifferentiation following MI prolongs APD in the remote and border zone and reduces APD heterogeneity.NEW & NOTEWORTHY Cardiac sympathetic neurons undergo cholinergic transdifferentiation following myocardial infarction; however, the electrophysiological effects of corelease of norepinephrine and acetylcholine (ACh) have never been assessed. Using a mouse model in which choline acetyltransferase was deleted from adult noradrenergic neurons and optical mapping of innervated hearts, we found that corelease of ACh reduces dispersion of action potential duration, which may be antiarrhythmic.


Assuntos
Potenciais de Ação/fisiologia , Sinalização do Cálcio/fisiologia , Transdiferenciação Celular/fisiologia , Neurônios Colinérgicos/metabolismo , Infarto do Miocárdio/fisiopatologia , Sistema Nervoso Simpático/metabolismo , Neurônios Adrenérgicos/metabolismo , Animais , Colina O-Acetiltransferase/genética , Colina O-Acetiltransferase/metabolismo , Modelos Animais de Doenças , Coração/inervação , Camundongos , Camundongos Knockout , Infarto do Miocárdio/metabolismo
8.
Environ Health Perspect ; 126(12): 127001, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30675795

RESUMO

BACKGROUND: Epidemiological evidence suggests that a majority of deaths attributed to secondhand smoke (SHS) exposure are cardiovascular related. However, to our knowledge, the impact of SHS on cardiac electrophysiology, [Formula: see text] handling, and arrhythmia risk has not been studied. OBJECTIVES: The purpose of this study was to investigate the impact of an environmentally relevant concentration of SHS on cardiac electrophysiology and indicators of arrhythmia. METHODS: Male C57BL/6 mice were exposed to SHS [total suspended particles (THS): [Formula: see text], nicotine: [Formula: see text], carbon monoxide: [Formula: see text], or filtered air (FA) for 4, 8, or 12 wk ([Formula: see text]]. Hearts were excised and Langendorff perfused for dual optical mapping with voltage- and [Formula: see text]-sensitive dyes. RESULTS: At slow pacing rates, SHS exposure did not alter baseline electrophysiological parameters. With increasing pacing frequency, action potential duration (APD), and intracellular [Formula: see text] alternans magnitude progressively increased in all groups. At 4 and 8 wk, there were no statistical differences in APD or [Formula: see text] alternans magnitude between SHS and FA groups. At 12 wk, both APD and [Formula: see text] alternans magnitude were significantly increased in the SHS compared to FA group ([Formula: see text]). SHS exposure did not impact the time constant of [Formula: see text] transient decay ([Formula: see text]) at any exposure time point. At 12 wk exposure, the recovery of [Formula: see text] transient amplitude with premature stimuli was slightly (but nonsignificantly) delayed in SHS compared to FA hearts, suggesting that [Formula: see text] release via ryanodine receptors may be impaired. CONCLUSIONS: In male mice, chronic exposure to SHS at levels relevant to social situations in humans increased their susceptibility to cardiac alternans, a known precursor to ventricular arrhythmia. https://doi.org/10.1289/EHP3664.


Assuntos
Arritmias Cardíacas/fisiopatologia , Coração/fisiopatologia , Poluição por Fumaça de Tabaco/efeitos adversos , Potenciais de Ação , Animais , Cálcio/metabolismo , Monóxido de Carbono/toxicidade , Estimulação Cardíaca Artificial , Eletrocardiografia , Masculino , Camundongos Endogâmicos C57BL , Nicotina/toxicidade , Material Particulado/toxicidade , Perfusão , Fibrilação Ventricular/metabolismo , Fibrilação Ventricular/fisiopatologia , Imagens com Corantes Sensíveis à Voltagem
9.
Am J Physiol Heart Circ Physiol ; 314(3): H415-H423, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29101167

RESUMO

Cardiac sympathetic nerves stimulate heart rate and force of contraction. Myocardial infarction (MI) leads to the loss of sympathetic nerves within the heart, and clinical studies have indicated that sympathetic denervation is a risk factor for arrhythmias and cardiac arrest. Two distinct types of denervation have been identified in the mouse heart after MI caused by ischemia-reperfusion: transient denervation of peri-infarct myocardium and sustained denervation of the infarct. Sustained denervation is linked to increased arrhythmia risk, but it is not known whether acute nerve loss in peri-infarct myocardium also contributes to arrhythmia risk. Peri-infarct sympathetic denervation requires the p75 neurotrophin receptor (p75NTR), but removal of p75NTR alters the pattern of sympathetic innervation in the heart and increases spontaneous arrhythmias. Therefore, we targeted the p75NTR coreceptor sortilin and the p75NTR-induced protease tumor necrosis factor-α-converting enzyme/A disintegrin and metalloproteinase domain 17 (TACE/ADAM17) to selectively block peri-infarct denervation. Sympathetic nerve density was quantified using immunohistochemistry for tyrosine hydroxylase. Genetic deletion of sortilin had no effect on the timing or extent of axon degeneration, but inhibition of TACE/ADAM17 with the protease inhibitor marimastat prevented the loss of axons from viable myocardium. We then asked whether retention of nerves in peri-infarct myocardium had an impact on cardiac electrophysiology 3 days after MI using ex vivo optical mapping of transmembrane potential and intracellular Ca2+. Preventing acute denervation of viable myocardium after MI did not significantly alter cardiac electrophysiology or Ca2+ handling, suggesting that transient denervation at this early time point has minimal impact on arrhythmia risk. NEW & NOTEWORTHY Sympathetic denervation after myocardial infarction is a risk factor for arrhythmias. We asked whether transient loss of nerves in viable myocardium contributed to arrhythmia risk. We found that targeting protease activity could prevent acute peri-infarct denervation but that it did not significantly alter cardiac electrophysiology or Ca2+ handling 3 days after myocardial infarction.


Assuntos
Arritmias Cardíacas/etiologia , Coração/inervação , Infarto do Miocárdio/complicações , Miocárdio/patologia , Sistema Nervoso Simpático/fisiopatologia , Proteína ADAM17/metabolismo , Potenciais de Ação , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patologia , Arritmias Cardíacas/fisiopatologia , Sinalização do Cálcio , Modelos Animais de Doenças , Frequência Cardíaca , Preparação de Coração Isolado , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/metabolismo , Receptores de Fator de Crescimento Neural/deficiência , Receptores de Fator de Crescimento Neural/genética , Sistema Nervoso Simpático/metabolismo , Fatores de Tempo , Sobrevivência de Tecidos
10.
J Mol Cell Cardiol ; 91: 114-22, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26739214

RESUMO

Optimal healing of damaged tissue following myocardial infarction (MI) requires a coordinated cellular response that can be divided into three phases: inflammatory, proliferative/reparative, and maturation. The inflammatory phase, characterized by rapid influx of cytokines, chemokines, and immune cells, is critical to the removal of damaged tissue. The onset of the proliferative/reparative phase is marked by increased proliferation of myofibroblasts and secretion of collagen to replace dead tissue. Lastly, crosslinking of collagen fibers and apoptosis of immune cells marks the maturation phase. Excessive inflammation or fibrosis has been linked to increased incidence of arrhythmia and other MI-related pathologies. This review describes the roles of inflammation and fibrosis in arrhythmogenesis and prospective therapies for anti-arrhythmic treatment.


Assuntos
Arritmias Cardíacas/genética , Regulação da Expressão Gênica , Infarto do Miocárdio/genética , Miocárdio/metabolismo , Transdução de Sinais , Animais , Arritmias Cardíacas/complicações , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patologia , Cálcio/metabolismo , Fibrose , Humanos , Inflamação , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Transporte de Íons , Metaloproteinases da Matriz/genética , Metaloproteinases da Matriz/metabolismo , Infarto do Miocárdio/complicações , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/patologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
11.
J Mol Cell Cardiol ; 76: 218-26, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25240641

RESUMO

Periodontal disease (PD) strongly correlates with increased mortality post-myocardial infarction (MI); however, the underlying mechanisms are unknown. Matrix metalloproteinase (MMP)-9 levels directly correlate with dysfunction and remodeling of the left ventricle (LV) post-MI. Post-MI, MMP-9 is produced by leukocytes and modulates inflammation. We have shown that exposure to Porphyromonas gingivalis lipopolysaccharide (PgLPS), an immunomodulatory molecule identified in PD patients, increases LV MMP-9 levels in mice and leads to cardiac inflammation and dysfunction. The aim of the study was to determine if circulating PgLPS exacerbates the LV inflammatory response post-MI through MMP-9 dependent mechanisms. We exposed wild type C57BL/6J and MMP-9(-/-) mice to PgLPS (ATCC 33277) for a period of 28 days before performing MI, and continued to deliver PgLPS for up to 7 days post-MI. We found systemic levels of PgLPS 1) increased MMP-9 levels in both plasma and infarcted LV resulting in reduced wall thickness and increased incidence of LV rupture post-MI and 2) increased systemic and local macrophage chemotaxis leading to accelerated M1 macrophage infiltration post-MI and decreased LV function. MMP-9 deletion played a protective role by attenuating the inflammation induced by systemic delivery of PgLPS. In conclusion, MMP-9 deletion has a cardioprotective role against PgLPS exposure, by attenuating macrophage mediated inflammation.


Assuntos
Lipopolissacarídeos/farmacologia , Metaloproteinase 9 da Matriz/sangue , Infarto do Miocárdio/imunologia , Porphyromonas gingivalis/imunologia , Animais , Infecções por Bacteroidaceae/sangue , Infecções por Bacteroidaceae/enzimologia , Infecções por Bacteroidaceae/imunologia , Movimento Celular , Feminino , Expressão Gênica , Mediadores da Inflamação/metabolismo , Macrófagos/imunologia , Masculino , Metaloproteinase 9 da Matriz/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio/sangue , Infarto do Miocárdio/enzimologia , Doenças Periodontais/sangue , Doenças Periodontais/complicações , Doenças Periodontais/microbiologia
12.
Arterioscler Thromb Vasc Biol ; 32(11): 2616-24, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22995524

RESUMO

OBJECTIVE: Assessment of thrombus inflammation in vivo could provide new insights into deep vein thrombosis (DVT) resolution. Here, we develop and evaluate 2 integrated fluorescence molecular-structural imaging strategies to quantify DVT-related inflammation and architecture and to assess the effect of thrombus inflammation on subsequent DVT resolution in vivo. METHODS AND RESULTS: Murine DVT were created with topical 5% FeCl(3) application to thigh or jugular veins (n=35). On day 3, mice received macrophage and matrix metalloproteinase activity fluorescence imaging agents. On day 4, integrated assessment of DVT inflammation and architecture was performed using confocal fluorescence intravital microscopy. Day 4 analyses showed robust relationships among in vivo thrombus macrophages, matrix metalloproteinase activity, and fluorescein isothiocyanate-dextran deposition (r>0.70; P<0.01). In a serial 2-time point study, mice with DVT underwent intravital microscopy at day 4 and day 6. Analyses revealed that the intensity of thrombus inflammation at day 4 predicted the magnitude of DVT resolution at day 6 (P<0.05). In a second approach, noninvasive fluorescence molecular tomography-computed tomography was used and detected macrophages within jugular DVT (P<0.05 versus sham controls). CONCLUSIONS: Integrated fluorescence molecular-structural imaging demonstrates that the DVT-induced inflammatory response can be readily assessed in vivo and can inform the magnitude of thrombus resolution.


Assuntos
Inflamação/patologia , Microscopia Confocal , Microscopia de Fluorescência , Imagem Molecular/métodos , Trombose Venosa/patologia , Animais , Biomarcadores/metabolismo , Cloretos , Dextranos , Modelos Animais de Doenças , Veia Femoral/imunologia , Veia Femoral/metabolismo , Veia Femoral/patologia , Compostos Férricos , Fluoresceína-5-Isotiocianato/análogos & derivados , Corantes Fluorescentes , Inflamação/induzido quimicamente , Inflamação/diagnóstico por imagem , Inflamação/imunologia , Inflamação/metabolismo , Veias Jugulares/imunologia , Veias Jugulares/metabolismo , Veias Jugulares/patologia , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Metaloproteinases da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Flebografia , Prognóstico , Reprodutibilidade dos Testes , Veia Safena/imunologia , Veia Safena/metabolismo , Veia Safena/patologia , Índice de Gravidade de Doença , Fatores de Tempo , Tomografia Computadorizada por Raios X , Trombose Venosa/induzido quimicamente , Trombose Venosa/diagnóstico por imagem , Trombose Venosa/imunologia , Trombose Venosa/metabolismo
13.
Ann Thorac Surg ; 94(4): 1241-8; discussion 1249, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22795054

RESUMO

BACKGROUND: Engineered heart tissue (EHT) is being developed for clinical implantation in heart failure or congenital heart disease and therefore requires a comprehensive functional characterization and scale-up of EHT. Here we explored the effects of scale-up of self-organizing EHT and present detailed electrophysiologic and contractile functional characterization. METHODS: Fibers from EHT were generated from self-organizing neonatal rat cardiac cells (0.5×10(6) to 3×10(6)/fiber) on fibrin. We characterized contractile patterns and measured contractile function using a force transducer, and assessed force-length relationship, maximal force generation, and rate of force generation. Action potential and conduction velocity of EHT were measured with optical mapping, and transcript levels of myosin heavy chain beta were measured by reverse transcriptase-polymerase chain reaction. RESULTS: Increasing the cell number per construct resulted in an increase in fiber volume. The force-length relationship was negatively impacted by increasing cell number. Maximal force generation and rate of force generation were also abrogated with increasing cell number. This decrease was not likely attributable to a selective expansion of noncontractile cells as myosin heavy chain beta levels were stable. Irregular contractile behavior was more prevalent in constructs with more cells. Engineered heart tissue (1×10(6)/construct) had an action potential duration of 140.2 milliseconds and a conduction velocity of 23.2 cm/s. CONCLUSIONS: Engineered heart tissue displays physiologically relevant features shared with native myocardium. Engineered heart tissue scale-up by increasing cell number abrogates contractile function, possibly as a result of suboptimal cardiomyocyte performance in the absence of vasculature. Finally, conduction velocity approaches that of native myocardium without any electrical or mechanical conditioning, suggesting that the self-organizing method may be superior to other rigid scaffold-based EHT.


Assuntos
Mapeamento Epicárdico/métodos , Insuficiência Cardíaca/cirurgia , Transplante de Coração/fisiologia , Contração Miocárdica/fisiologia , Miocárdio/citologia , Engenharia Tecidual , Animais , Animais Recém-Nascidos , Células Cultivadas , Modelos Animais de Doenças , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Ratos , Ratos Sprague-Dawley
14.
Circulation ; 119(10): 1398-407, 2009 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-19255346

RESUMO

BACKGROUND: Cardiac hypertrophy, the clinical hallmark of hypertrophic cardiomyopathy (HCM), is a major determinant of morbidity and mortality not only in HCM but also in a number of cardiovascular diseases. There is no effective therapy for HCM and generally for cardiac hypertrophy. Myocardial oxidative stress and thiol-sensitive signaling molecules are implicated in pathogenesis of hypertrophy and fibrosis. We posit that treatment with N-acetylcysteine, a precursor of glutathione, the largest intracellular thiol pool against oxidative stress, could reverse cardiac hypertrophy and fibrosis in HCM. METHODS AND RESULTS: We treated 2-year-old beta-myosin heavy-chain Q403 transgenic rabbits with established cardiac hypertrophy and preserved systolic function with N-acetylcysteine or a placebo for 12 months (n=10 per group). Transgenic rabbits in the placebo group had cardiac hypertrophy, fibrosis, systolic dysfunction, increased oxidized to total glutathione ratio, higher levels of activated thiol-sensitive active protein kinase G, dephosphorylated nuclear factor of activated T cells (NFATc1) and phospho-p38, and reduced levels of glutathiolated cardiac alpha-actin. Treatment with N-acetylcysteine restored oxidized to total glutathione ratio, normalized levels of glutathiolated cardiac alpha-actin, reversed cardiac and myocyte hypertrophy and interstitial fibrosis, reduced the propensity for ventricular arrhythmias, prevented cardiac dysfunction, restored myocardial levels of active protein kinase G, and dephosphorylated NFATc1 and phospho-p38. CONCLUSIONS: Treatment with N-acetylcysteine, a safe prodrug against oxidation, reversed established cardiac phenotype in a transgenic rabbit model of human HCM. Because there is no effective pharmacological therapy for HCM and given that hypertrophy, fibrosis, and cardiac dysfunction are common and major predictors of clinical outcomes, the findings could have implications in various cardiovascular disorders.


Assuntos
Acetilcisteína/uso terapêutico , Antioxidantes/uso terapêutico , Cardiomiopatia Hipertrófica/tratamento farmacológico , Insuficiência Cardíaca Sistólica/prevenção & controle , Compostos de Sulfidrila/metabolismo , Actinas/análise , Animais , Animais Geneticamente Modificados , Cardiomiopatia Hipertrófica/complicações , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/patologia , Tamanho Celular , Modelos Animais de Doenças , Feminino , Fibrose , Glutationa/metabolismo , Insuficiência Cardíaca Sistólica/etiologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Cadeias Pesadas de Miosina/deficiência , Cadeias Pesadas de Miosina/genética , Fatores de Transcrição NFATC/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Coelhos , Fibrilação Ventricular/etiologia , Fibrilação Ventricular/prevenção & controle , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA