Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 14(4)2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35448861

RESUMO

Aflatoxin B1 (AFB1) is a potent mycotoxin and natural carcinogen. The primary producers of AFB1 are Aspergillus flavus and A. parasiticus. Sterigmatocystin (STC), another mycotoxin, shares its biosynthetic pathway with aflatoxins. While there are abundant data on the biological effects of AFB1, STC is not well characterised. According to published data, AFB1 is more harmful to biological systems than STC. It has been suggested that STC is about one-tenth as potent a mutagen as AFB1 as measured by the Ames test. In this research, the biological effects of S9 rat liver homogenate-activated and non-activated STC and AFB1 were compared using two different biomonitoring systems, SOS-Chromotest and a recently developed microinjection zebrafish embryo method. When comparing the treatments, activated STC caused the highest mortality and number of DNA strand breaks across all injected volumes. Based on the E. coli SOS-Chromotest, the two toxins exerted the same genotoxicities. Moreover, according to the newly developed zebrafish microinjection method, STC appeared more toxic than AFB1. The scarce information correlating AFB1 and STC toxicity suggests that AFB1 is a more potent genotoxin than STC. Our findings contradict this assumption and illustrate the need for more complex biomonitoring systems for mycotoxin risk assessment.


Assuntos
Aflatoxinas , Esterigmatocistina , Aflatoxina B1/toxicidade , Animais , Escherichia coli , Microinjeções , Esterigmatocistina/toxicidade , Peixe-Zebra
2.
Curr Microbiol ; 75(7): 907-917, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29511873

RESUMO

Aflatoxin B1 (AFB1) and zearalenone (ZON) are dangerous mycotoxins due to their carcinogenicity or oestrogenicity. To alleviate negative effects on humans and animals, successful detoxification tools are needed. The application of microorganisms to biodegrade mycotoxins can be an effective way in food and feed industry enhancing food safety. Several Rhodococcus strains are effective in the degradation of aromatic mycotoxins and their application in mycotoxin biodetoxification processes is a promising field of biotechnology. In this study, we investigated the AFB1 and ZON detoxification ability of 42 type strains of Rhodococcus species. Samples were analysed by high-performance liquid chromatograph equipped with fluorescence detector for mycotoxin concentration and SOS-chromotest was used for monitoring remaining genotoxicity. Out of the 42 Rhodococcus strains, 18 could eliminate more than 90% of the applied AFB1 and the genotoxicity was ceased by 15 strains in 72 h (R. imtechensis JCM 13270T, R. erythropolis JCM 3201T, R. tukisamuensis JCM 11308T, R. rhodnii JCM 3203T, R. aerolatus JCM 19485T, R. enclensis DSM 45688T, R. lactis DSM 45625T, R. trifolii DSM 45580T, R. qingshengii DSM 45222T, R. artemisiae DSM 45380T, R. baikonurensis DSM 44587T, R. globerulus JCM 7472T, R. kroppenstedtii JCM 13011T, R. pyridinivorans JCM 10940T, R. corynebacterioides JCM 3376T). In case of ZON, only R. percolatus JCM 10087T was able to degrade more than 90% of the compound and to reduce the oestrogenicity with 70%.


Assuntos
Aflatoxina B1/metabolismo , Rhodococcus/metabolismo , Zearalenona/metabolismo , Biodegradação Ambiental , Rhodococcus/classificação
3.
Acta Microbiol Immunol Hung ; 64(4): 423-438, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29192510

RESUMO

Aflatoxin B1 (AFB1) produced by Aspergillus molds is a genotoxic and carcinogenic mycotoxin. For the elimination of mycotoxins from food and feed, biodetoxification can be a successful tool. The aim of this study was to reveal biodetoxification with the cell-free extracts of Rhodococcus erythropolis NI1 and Rhodococcus rhodochrous NI2, which have been already proved to detoxify AFB1. Extracellular matrices of cultures and also intracellular extracts were applied for detoxification. In both cases, media containing constitutively produced and AFB1-induced enzymes were tested, respectively. The pH tolerance of enzymes in the detoxification was examined at pH 7, 7.5, and 8. The remained genotoxicity was detected by SOS-Chromotest and the AFB1 concentration was measured by high performance liquid chromatography with fluorescence detection. In the extracellular matrix, no reduction of genotoxicity was observed. However, detoxification was completed by intracellular enzymes. In intracellular extracts of both strains, genotoxicity was ceased by the constitutive enzymes within 6 h but induced and constitutive enzymes collectively achieved this result within minutes. Moreover, total biodetoxification was observed at every pH adjustment. Analytical results confirmed >84% degradation potential in each sample. Our results indicate a uniquely fast way for the detoxification of AFB1 with intracellular enzymes of R. erythropolis NI1 and R. rhodochrous NI2.


Assuntos
Aflatoxina B1/metabolismo , Contaminação de Alimentos/análise , Rhodococcus/química , Aspergillus/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Biocatálise , Rhodococcus/enzimologia , Rhodococcus/metabolismo
4.
J Hazard Mater ; 244-245: 429-35, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23274943

RESUMO

The aim of this study was to screen microbes for their zearalenone degrading potential and to select microbes whose activities do not create toxic or endocrine disrupting metabolites. Bioluminescent bioreporters (Saccharomyces cerevisiae BLYES and BLYR) were successfully used to monitor toxin degradation; the results of zearalenone biodegradation experiments were confirmed by parallel chemical analysis (HPLC-FLD) and immunoanalytical (ELISA) tests. Using the BLYES/BLYR bioreporters, the most appropriate microbes (ones that produced minimal toxic products and products with lower estrogenic potential) could be selected. The most promising strains belong to Streptomyces and Rhodococcus genera. Our findings demonstrate the benefit of using biological tests beside the analytical method, since bioreporters were able to monitor the samples for toxicity and estrogenic potential even after substantial degradation. We conclude that the BLYES/BLYR bioreporter system is a cost effective, fast and reliable tool for screening zearalenone-degrading microbes.


Assuntos
Poluentes Ambientais/metabolismo , Estrogênios/metabolismo , Saccharomyces cerevisiae/genética , Zearalenona/metabolismo , Bioensaio , Poluentes Ambientais/química , Estrogênios/química , Estrogênios/genética , Genes Reporter , Rhodococcus/química , Rhodococcus/metabolismo , Streptomyces/química , Streptomyces/metabolismo , Zearalenona/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA