Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Medicina (Kaunas) ; 58(1)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35056408

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has brought significant challenges to many aspects of healthcare delivery since the first reported case in early December 2019. Once in the body, SARS-CoV-2 can spread to other digestive organs, such as the liver, because of the presence of ACE2 receptors. Colorectal cancer (CRC) remains the second-leading cause of death in the United States (US). Therefore, individuals are routinely screened using either endoscopic methods (i.e., flexible sigmoidoscopy and colonoscopy) or stool-based tests, as per the published guidelines. At the beginning of the COVID-19 pandemic, the Centers for Medicare and Medicaid Services (CMS) recommended that all non-urgent surgical and medical procedures, including screening colonoscopies, be delayed until the pandemic stabilization. This article aims to review the impact of COVID-19 on CRC screening.


Assuntos
COVID-19 , Neoplasias Colorretais , Idoso , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/epidemiologia , Detecção Precoce de Câncer , Humanos , Medicare , Pandemias , SARS-CoV-2 , Estados Unidos/epidemiologia
2.
Cancers (Basel) ; 13(11)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34064154

RESUMO

Gastrointestinal (GI) cancers, including esophageal, gastric, colorectal, liver, and pancreatic cancers, remain as one of the leading causes of death worldwide, with a large proportion accounting for fatalities related to metastatic disease. Invasion of primary cancer occurs by the actin cytoskeleton remodeling, including the formation of the filopodia, stereocilia, and other finger-like membrane protrusions. The crucial step of actin remodeling in the malignant cells is mediated by the fascin protein family, with fascin-1 being the most active. Fascin-1 is an actin-binding protein that cross-links filamentous actin into tightly packed parallel bundles, giving rise to finger-like cell protrusions, thus equipping the cell with the machinery necessary for adhesion, motility, and invasion. Thus, fascin-1 has been noted to be a key component for determining patient diagnosis and treatment plan. Indeed, the overexpression of fascin-1 in GI tract cancers has been associated with a poor clinical prognosis and metastatic progression. Moreover, fascin-1 has received attention as a potential therapeutic target for metastatic GI tract cancers. In this review, we provide an up-to-date literature review of the role of fascin-1 in the initiation of GI tract cancers, metastatic progression, and patients' clinical outcomes.

3.
Biochem J ; 477(19): 3867-3883, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32955078

RESUMO

Hereditary hemochromatosis (HH), an iron-overload disease, is a prevalent genetic disorder. As excess iron causes a multitude of metabolic disturbances, we postulated that iron overload in HH disrupts colonic homeostasis and colon-microbiome interaction and exacerbates the development and progression of colonic inflammation and colon cancer. To test this hypothesis, we examined the progression and severity of colitis and colon cancer in a mouse model of HH (Hfe-/-), and evaluated the potential contributing factors. We found that experimentally induced colitis and colon cancer progressed more robustly in Hfe-/- mice than in wild-type mice. The underlying causes were multifactorial. Hfe-/- colons were leakier with lower proliferation capacity of crypt cells, which impaired wound healing and amplified inflammation-driven tissue injury. The host/microflora axis was also disrupted. Sequencing of fecal 16S RNA revealed profound changes in the colonic microbiome in Hfe-/- mice in favor of the pathogenic bacteria belonging to phyla Proteobacteria and TM7. There was an increased number of bacteria adhered onto the mucosal surface of the colonic epithelium in Hfe-/- mice than in wild-type mice. Furthermore, the expression of innate antimicrobial peptides, the first-line of defense against bacteria, was lower in Hfe-/- mouse colon than in wild-type mouse colon; the release of pro-inflammatory cytokines upon inflammatory stimuli was also greater in Hfe-/- mouse colon than in wild-type mouse colon. These data provide evidence that excess iron accumulation in colonic tissue as happens in HH promotes colitis and colon cancer, accompanied with bacterial dysbiosis and loss of function of the intestinal/colonic barrier.


Assuntos
Colite , Neoplasias do Colo , Disbiose , Microbioma Gastrointestinal , Hemocromatose , Proteobactérias/crescimento & desenvolvimento , Animais , Colite/genética , Colite/metabolismo , Colite/microbiologia , Colite/patologia , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/microbiologia , Neoplasias do Colo/patologia , Disbiose/genética , Disbiose/metabolismo , Disbiose/microbiologia , Disbiose/patologia , Hemocromatose/genética , Hemocromatose/metabolismo , Hemocromatose/microbiologia , Hemocromatose/patologia , Proteína da Hemocromatose/deficiência , Proteína da Hemocromatose/metabolismo , Camundongos , Camundongos Knockout , Proteobactérias/classificação
4.
Sci Rep ; 10(1): 8536, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32444674

RESUMO

Metformin is the first-line treatment for type 2 diabetes. Inhibition of hepatic gluconeogenesis is the primary contributor to its anti-diabetic effect. Metformin inhibits complex I and α-glycerophosphate shuttle, and the resultant increase in cytoplasmic NADH/NAD+ ratio diverts glucose precursors away from gluconeogenesis. These actions depend on metformin-mediated activation of AMP kinase (AMPK). Here we report on a hitherto unknown mechanism. Metformin inhibits the expression of the plasma membrane citrate transporter NaCT in HepG2 cells and decreases cellular levels of citrate. 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR), an AMPK activator, elicits a similar effect. The process involves a decrease in maximal velocity with no change in substrate affinity. The decrease in NaCT expression is associated with decreased mRNA levels. AMPK inhibits mTOR, and the mTOR inhibitor rapamycin also decreases NaCT expression. The transcription factor downstream of AMPK that is relevant to cAMP signaling is CREB; decreased levels of phospho-CREB seem to mediate the observed effects of metformin on NaCT. Citrate is known to suppress glycolysis by inhibiting phosphofructokinase-1 and activate gluconeogenesis by stimulating fructose-1,6-bisphophatase; therefore, the decrease in cellular levels of citrate would stimulate glycolysis and inhibit gluconeogenesis. These studies uncover a novel mechanism for the anti-diabetic actions of metformin.


Assuntos
Aminoimidazol Carboxamida/análogos & derivados , Carcinoma Hepatocelular/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Metformina/farmacologia , Terapia de Alvo Molecular , Ribonucleotídeos/farmacologia , Simportadores/antagonistas & inibidores , Aminoimidazol Carboxamida/farmacologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Ácido Cítrico/metabolismo , Glicólise , Células Hep G2 , Humanos , Hipoglicemiantes/farmacologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Transdução de Sinais , Simportadores/genética , Simportadores/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
5.
Biochem J ; 477(8): 1499-1513, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32239172

RESUMO

Hereditary hemochromatosis (HH) is mostly caused by mutations in the iron-regulatory gene HFE. The disease is associated with iron overload, resulting in liver cirrhosis/cancer, cardiomegaly, kidney dysfunction, diabetes, and arthritis. Fe2+-induced oxidative damage is suspected in the etiology of these symptoms. Here we examined, using Hfe-/- mice, whether disruption of uric acid (UA) homeostasis plays any role in HH-associated arthritis. We detected elevated levels of UA in serum and intestine in Hfe-/- mice compared with controls. Though the expression of xanthine oxidase, which generates UA, was not different in liver and intestine between wild type and Hfe-/- mice, the enzymatic activity was higher in Hfe-/- mice. We then examined various transporters involved in UA absorption/excretion. Glut9 expression did not change; however, there was an increase in Mrp4 and a decrease in Abcg2 in Hfe-/- mice. As ABCG2 mediates intestinal excretion of UA and mutations in ABCG2 cause hyperuricemia, we examined the potential connection between iron and ABCG2. We found p53-responsive elements in hABCG2 promoter and confirmed with chromatin immunoprecipitation that p53 binds to this promoter. p53 protein was reduced in Hfe-/- mouse intestine. p53 is a heme-binding protein and p53-heme complex is subjected to proteasomal degradation. We conclude that iron/heme overload in HH increases xanthine oxidase activity and also promotes p53 degradation resulting in decreased ABCG2 expression. As a result, systemic UA production is increased and intestinal excretion of UA via ABCG2 is decreased, causing serum and tissue accumulation of UA, a potential factor in the etiology of HH-associated arthritis.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Hemocromatose/metabolismo , Hiperuricemia/enzimologia , Ácido Úrico/metabolismo , Xantina Oxidase/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Feminino , Hemocromatose/complicações , Hemocromatose/congênito , Hemocromatose/enzimologia , Proteína da Hemocromatose/genética , Proteína da Hemocromatose/metabolismo , Homeostase , Humanos , Hiperuricemia/etiologia , Hiperuricemia/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Xantina Oxidase/genética
6.
Oncogene ; 39(16): 3292-3304, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32071396

RESUMO

GPR81 is a G-protein-coupled receptor for lactate, which is upregulated in breast cancer and plays an autocrine role to promote tumor growth by tumor cell-derived lactate. Here we asked whether lactate has any paracrine role via activation of GPR81 in cells present in tumor microenvironment to help tumor growth. First, we showed that deletion of Gpr81 suppresses breast cancer growth in a constitutive breast cancer mouse model (MMTV-PyMT-Tg). We then used a syngeneic transplant model by monitoring tumor growth from a mouse breast cancer cell line (AT-3, Gpr81-negative) implanted in mammary fat pad of wild-type mice and Gpr81-null mice. Tumor growth was suppressed in Gpr81-null mice compared with wild-type mice. There were more tumor-infiltrating T cells and MHCIIhi-immune cells in tumors from Gpr81-null mice compared with tumors from wild-type mice. RNA-seq analysis of tumors indicated involvement of immune cells and antigen presentation in Gpr81-dependent tumor growth. Antigen-presenting dendritic cells expressed Gpr81 and activation of this receptor by lactate suppressed cell-surface presentation of MHCII. Activation of Gpr81 in dendritic cells was associated with decreased cAMP, IL-6 and IL-12. These findings suggest that tumor cell-derived lactate activates GPR81 in dendritic cells and prevents presentation of tumor-specific antigens to other immune cells. This paracrine mechanism is complementary to the recently discovered autocrine mechanism in which lactate induces PD-L1 in tumor cells via activation of GPR81 in tumor cells, thus providing an effective means for tumor cells to evade immune system. As such, blockade of GPR81 signaling could boost cancer immunotherapy.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Neoplasias da Mama/genética , Linfócitos do Interstício Tumoral/imunologia , Receptores Acoplados a Proteínas G/genética , Animais , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Proliferação de Células/genética , AMP Cíclico/genética , Células Dendríticas/imunologia , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/imunologia , Humanos , Interleucina-12/genética , Interleucina-6/genética , Ácido Láctico/metabolismo , Comunicação Parácrina/genética , Comunicação Parácrina/imunologia , Microambiente Tumoral/imunologia
7.
Biochim Biophys Acta Rev Cancer ; 1868(1): 246-257, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28512002

RESUMO

Mitochondria are the sites of pyruvate oxidation, citric acid cycle, oxidative phosphorylation, ketogenesis, and fatty acid oxidation. Attenuation of mitochondrial function is one of the most significant changes that occurs in tumor cells, directly linked to oncogenesis, angiogenesis, Warburg effect, and epigenetics. In particular, three mitochondrial enzymes are inactivated in cancer: pyruvate dehydrogenase (PDH), succinate dehydrogenase (SDH), and 3-hydroxy-3-methylglutaryl CoA synthase-2 (HMGCS2). These enzymes are subject to regulation via acetylation/deacetylation. SIRT3, the predominant mitochondrial deacetylase, directly targets these enzymes for deacetylation and maintains their optimal catalytic activity. SIRT3 is a tumor suppressor, and deacetylation of these enzymes contributes to its biological function. PDH catalyzes the oxidative decarboxylation of pyruvate into acetyl CoA, SDH oxidizes succinate into fumarate, and HMGCS2 controls the synthesis of the ketone body ß-hydroxybutyrate. As the activities of these enzymes are decreased in cancer, tumor cells accumulate lactate and succinate but produce less amounts of ß-hydroxybutyrate. Apart from their role in cellular energetics, these metabolites function as signaling molecules via specific cell-surface G-protein-coupled receptors. Lactate signals via GPR81, succinate via GPR91, and ß-hydroxybutyrate via GPR109A. In addition, lactate activates hypoxia-inducible factor HIF1α and succinate promotes DNA methylation. GPR81 and GPR91 are tumor promoters, and increased production of lactate and succinate as their agonists drives tumorigenesis by enhancing signaling via these two receptors. In contrast, GPR109A is a tumor suppressor, and decreased synthesis of ß-hydroxybutyrate as its agonist suppresses signaling via this receptor, thus attenuating the tumor-suppressing function of GPR109A. In parallel with the opposing changes in lactate/succinate and ß-hydroxybutyrate levels, tumor cells upregulate GPR81 and GPR91 but downregulate GPR109A. As such, these three metabolite receptors play a critical role in cancer and represent a new class of drug targets with selective antagonists of GPR81 and GPR91 for cancer treatment and agonists of GPR109A for cancer prevention.


Assuntos
Membrana Celular/metabolismo , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Metilação de DNA/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA