Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 137(3): 034306, 2012 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-22830701

RESUMO

A continuous wave quantum cascade laser (cw-QCL) operating at 10 µm has been used to record absorption spectra of low pressure samples of OCS in an astigmatic Herriott cell. As a result of the frequency chirp of the laser, the spectra show clearly the effects of rapid passage on the absorption line shape. At the low chirp rates that can be obtained with the cw-QCL, population transfer between rovibrational quantum states is predicted to be much more efficient than in typical pulsed QCL experiments. This optical pumping is investigated by solving the Maxwell Bloch equations to simulate the propagation of the laser radiation through an inhomogeneously broadened two-level system. The calculated absorption profiles show good quantitative agreement with those measured experimentally over a range of chirp rates and optical thicknesses. It is predicted that at a low chirp rate of 0.13 MHz ns(-1), the population transfer between rovibrational quantum states is 12%, considerably more than that obtained at the higher chirp rates utilised in pulsed QCL experiments.

2.
Opt Lett ; 35(16): 2750-2, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20717445

RESUMO

In this Letter, a 10 microm quantum cascade laser operating in the intrapulse mode is used observe rapid passage (RP) effects within a 40 cm single-pass gas cell containing low pressures of NH(3). The laser tuning range allows the rotational states J=2 with K=0, 1, and 2 to be probed. We show that the RP structures change as a function of optical density and that the magnitude of the delay in the switch from absorption to emission as a function of increased gas pressure is dependent upon the initial value of K. These measurements are qualitatively well modeled using the Maxwell-Bloch equations.

3.
J Breath Res ; 3(4): 046002, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21386195

RESUMO

Alveolar breath samples from a small case-control study population have been collected and measured via ion-molecule reaction mass spectrometry, and a constructive statistical approach to the identification of volatile biomarkers has been formulated by applying multivariate statistical methods on the mass spectra. The nature of the data is such that the number of variables largely exceeds the observations, representing a typical experimental scenario when breath analysis is conducted using mass spectrometry. Principal components analysis has been performed on the high dimensional dataset of molecular abundances, providing evidence of case separation and reducing the number of functional discriminators by almost 90%. Afterwards, a deductive approach based on a binary regression was conducted on the reduced dataset, providing an entirely reliable case discrimination model exclusively depending on the concentrations in the breath mixture of 3 out of a total of 97 metabolites.

4.
J Phys Chem A ; 112(40): 9751-7, 2008 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-18781727

RESUMO

This paper demonstrates how a quantum cascade laser (QCL) in its intrapulse mode can provide a simple method for probing the products of a photolysis event. The system studied is the 266 nm photodissociation of CF3I with the CF3 fragments subsequently detected using radiation at approximately 1253 cm(-1) generated by a pulsed QCL. The tuning range provided by the frequency down-chirp of the QCL operated in its intrapulse mode allows a approximately 1 cm(-1) segment of the CF3 nu3 band to be measured following each photolysis laser pulse. Identification of features within this spectral region allows the CF3 ( v = 0) number density to be calculated as a function of pump-probe delay, and consequently the processes which populate and deplete this quantum state may be examined. Rate constants for the population cascade from higher vibrational levels into the v = 0 state, k 1, and for the recombination of the CF3 radicals to form C2F6, k2, are measured. The returned values of k1 = (2.3 +/- 0.34) x 10(-12) cm(3) molecule(-1) s(-1) and k2 = (3.9 +/- 0.34) x 10(-12) cm(3) molecule(-1) s(-1) are found to be in good agreement with reported literature values.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA