Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hypertension ; 76(4): 1308-1318, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32829665

RESUMO

Here, we tested the hypothesis that TNAP (tissue nonspecific alkaline phosphatase) modulates vascular responsiveness to norepinephrine. In the isolated, Tyrode's-perfused rat mesentery, 50 µmol/L of L-p-bromotetramisole (L-p-BT; selective TNAP inhibitor, Ki=56 µmol/L) significantly reduced TNAP activity and caused a significant 9.0-fold rightward-shift in the norepinephrine concentration versus vasoconstriction relationship. At 100 µmol/L, L-p-BT further reduced mesenteric TNAP activity and caused an additional significant right-shift of the norepinephrine concentration versus vasoconstriction relationship. A higher concentration (200 µmol/L) of L-p-BT had no further effect on either mesenteric TNAP activity or norepinephrine-induced vasoconstriction. L-p-BT did not alter vascular responses to vasopressin, thus ruling-out nonspecific suppression of vascular reactivity. Since in the rat mesenteric vasculature α1-adrenoceptors mediate norepinephrine-induced vasoconstriction, these finding indicate that TNAP inhibition selectively interferes with α1-adrenoceptor signaling. Additional experiments showed that the effects of TNAP inhibition on norepinephrine-induced vasoconstriction were not mediated by accumulation of pyrophosphate or ATP (TNAP substrates) nor by reduced adenosine levels (TNAP product). TNAP inhibition significantly reduced the Hillslope of the norepinephrine concentration versus vasoconstriction relationship from 1.8±0.2 (consistent with positive cooperativity of α1-adrenoceptor signaling) to 1.0±0.1 (no cooperativity). Selective activation of A1-adenosine receptors, which are known to participate in coincident signaling with α1-adrenoceptors, reversed the suppressive effects of L-p-BT on norepinephrine-induced vasoconstriction. In vivo, L-p-BT administration achieved plasma levels of ≈60 µmol/L and inhibited mesenteric vascular responses to exogenous norepinephrine and sympathetic nerve stimulation. TNAP modulates vascular responses to norepinephrine likely by affecting positive cooperativity of α1-adrenoceptor signaling via a mechanism involving A1 receptor signaling.


Assuntos
Fosfatase Alcalina/metabolismo , Proteínas de Membrana/metabolismo , Mesentério/efeitos dos fármacos , Norepinefrina/farmacologia , Tetramizol/análogos & derivados , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia , Antagonistas do Receptor A1 de Adenosina/farmacologia , Fosfatase Alcalina/antagonistas & inibidores , Fosfatase Alcalina/genética , Animais , Masculino , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Mesentério/metabolismo , Ratos , Tetramizol/farmacologia , Xantinas/farmacologia
2.
Pediatr Crit Care Med ; 21(1): 33-41, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31305328

RESUMO

OBJECTIVES: To determine the production of 9-hydroxyoctadecadienoic acid and 13-hydroxyoctadecadienoic acid during cardiopulmonary bypass in infants and children undergoing cardiac surgery, evaluate their relationship with increase in cell-free plasma hemoglobin, provide evidence of bioactivity through markers of inflammation and vasoactivity (WBC count, milrinone use, vasoactive-inotropic score), and examine their association with overall clinical burden (ICU/hospital length of stay and mechanical ventilation duration). DESIGN: Prospective observational study. SETTING: Twelve-bed cardiac ICU in a university-affiliated children's hospital. PATIENTS: Children were prospectively enrolled during their preoperative clinic appointments with the following criteria: greater than 1 month to less than 18 years old, procedures requiring cardiopulmonary bypass INTERVENTIONS:: None. MEASUREMENTS AND MAIN RESULTS: Plasma was collected at the start and end of cardiopulmonary bypass in 34 patients. 9-hydroxyoctadecadienoic acid, 13-hydroxyoctadecadienoic acid, plasma hemoglobin, and WBC increased. 9:13-hydroxyoctadecadienoic acid at the start of cardiopulmonary bypass was associated with vasoactive-inotropic score at 2-24 hours postcardiopulmonary bypass (R = 0.25; p < 0.01), milrinone use (R = 0.17; p < 0.05), and WBC (R = 0.12; p < 0.05). 9:13-hydroxyoctadecadienoic acid at the end of cardiopulmonary bypass was associated with vasoactive-inotropic score at 2-24 hours (R = 0.17; p < 0.05), 24-48 hours postcardiopulmonary bypass (R = 0.12; p < 0.05), and milrinone use (R = 0.19; p < 0.05). 9:13-hydroxyoctadecadienoic acid at the start and end of cardiopulmonary bypass were associated with the changes in plasma hemoglobin (R = 0.21 and R = 0.23; p < 0.01). The changes in plasma hemoglobin was associated with milrinone use (R = 0.36; p < 0.001) and vasoactive-inotropic score less than 2 hours (R = 0.22; p < 0.01), 2-24 hours (R = 0.24; p < 0.01), and 24-48 hours (R = 0.48; p < 0.001) postcardiopulmonary bypass. Cardiopulmonary bypass duration, 9:13-hydroxyoctadecadienoic acid at start of cardiopulmonary bypass, and plasma hemoglobin may be risk factors for high vasoactive-inotropic score. Cardiopulmonary bypass duration, changes in plasma hemoglobin, 9:13-hydroxyoctadecadienoic acid, and vasoactive-inotropic score correlate with ICU and hospital length of stay and/mechanical ventilation days. CONCLUSIONS: In low-risk pediatric patients undergoing cardiopulmonary bypass, 9:13-hydroxyoctadecadienoic acid was associated with changes in plasma hemoglobin, vasoactive-inotropic score, and WBC count, and may be a risk factor for high vasoactive-inotropic score, indicating possible inflammatory and vasoactive effects. Further studies are warranted to delineate the role of hydroxyoctadecadienoic acids and plasma hemoglobin in cardiopulmonary bypass-related dysfunction and to explore hydroxyoctadecadienoic acid production as a potential therapeutic target.


Assuntos
Ponte Cardiopulmonar/métodos , Ácidos Graxos Insaturados/sangue , Cardiopatias Congênitas/cirurgia , Ácidos Linoleicos/sangue , Oxilipinas/sangue , Biomarcadores/sangue , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Procedimentos Cirúrgicos Cardíacos/métodos , Ponte Cardiopulmonar/efeitos adversos , Criança , Pré-Escolar , Ácidos Graxos Insaturados/metabolismo , Feminino , Cardiopatias Congênitas/tratamento farmacológico , Hemoglobinas/análise , Humanos , Lactente , Unidades de Terapia Intensiva , Tempo de Internação , Contagem de Leucócitos , Ácidos Linoleicos/metabolismo , Masculino , Milrinona/uso terapêutico , Oxilipinas/metabolismo , Estudos Prospectivos , Respiração Artificial , Fatores de Risco , Vasodilatadores/uso terapêutico
3.
Hypertension ; 72(4): 909-917, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30354710

RESUMO

SDF-1α (stromal cell-derived factor-1α) is a CXCR4-receptor agonist and DPP4 (dipeptidyl peptidase 4) substrate. SDF-1α, particularly when combined with sitagliptin to block the metabolism of SDF-1α by DPP4, stimulates proliferation of cardiac fibroblasts via the CXCR4 receptor; this effect is greater in cells from spontaneously hypertensive rats versus Wistar-Kyoto normotensive rats. Emerging evidence indicates that ubiquitin(1-76) exists in plasma and is a potent CXCR4-receptor agonist. Therefore, we hypothesized that ubiquitin(1-76), similar to SDF-1α, should increase proliferation of cardiac fibroblasts. Contrary to our working hypothesis, ubiquitin(1-76) did not stimulate cardiac fibroblast proliferation, yet unexpectedly antagonized the proproliferative effects of SDF-1α combined with sitagliptin. In this regard, ubiquitin(1-76) was more potent in spontaneously hypertensive versus Wistar-Kyoto cells. In the presence of 6bk (selective inhibitor of insulin-degrading enzyme [IDE]; an enzyme known to convert ubiquitin(1-76) to ubiquitin(1-74)), ubiquitin(1-76) no longer antagonized the proproliferative effects of SDF-1α/sitagliptin. Ubiquitin(1-74) also antagonized the proproliferative effects of SDF-1α/sitagliptin, and this effect of ubiquitin(1-74) was not blocked by 6bk and was >10-fold more potent compared with ubiquitin(1-76). Neither ubiquitin(1-76) nor ubiquitin(1-74) inhibited the proproliferative effects of the non-CXCR4 receptor agonist neuropeptide Y (activates Y1 receptors). Cardiac fibroblasts expressed IDE mRNA, protein, and activity and converted ubiquitin(1-76) to ubiquitin(1-74). Spontaneously hypertensive fibroblasts expressed greater IDE activity. Extracellular ubiquitin(1-76) blocks the proproliferative effects of SDF-1α/sitagliptin via its conversion by IDE to ubiquitin(1-74), a potent CXCR4 antagonist. Thus, IDE inhibitors, particularly when combined with DPP4 inhibitors or hypertension, could increase the risk of cardiac fibrosis.


Assuntos
Proliferação de Células , Quimiocina CXCL12/metabolismo , Fibroblastos , Hipertensão/metabolismo , Insulisina , Miocárdio/patologia , Receptores CXCR4 , Animais , Pressão Sanguínea/fisiologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Células Cultivadas , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibrose , Insulisina/antagonistas & inibidores , Insulisina/metabolismo , Neuropeptídeo Y/metabolismo , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Receptores CXCR4/agonistas , Receptores CXCR4/metabolismo , Transdução de Sinais , Fosfato de Sitagliptina/farmacologia , Ubiquitina/metabolismo
4.
Diabetes ; 64(11): 3737-50, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26293505

RESUMO

Both Roux-en-Y gastric bypass (RYGB) surgery and exercise can improve insulin sensitivity in individuals with severe obesity. However, the impact of RYGB with or without exercise on skeletal muscle mitochondria, intramyocellular lipids, and insulin sensitivity index (SI) is unknown. We conducted a randomized exercise trial in patients (n = 101) who underwent RYGB surgery and completed either a 6-month moderate exercise (EX) or a health education control (CON) intervention. SI was determined by intravenous glucose tolerance test. Mitochondrial respiration and intramyocellular triglyceride, sphingolipid, and diacylglycerol content were measured in vastus lateralis biopsy specimens. We found that EX provided additional improvements in SI and that only EX improved cardiorespiratory fitness, mitochondrial respiration and enzyme activities, and cardiolipin profile with no change in mitochondrial content. Muscle triglycerides were reduced in type I fibers in CON, and sphingolipids decreased in both groups, with EX showing a further reduction in a number of ceramide species. In conclusion, exercise superimposed on bariatric surgery-induced weight loss enhances mitochondrial respiration, induces cardiolipin remodeling, reduces specific sphingolipids, and provides additional improvements in insulin sensitivity.


Assuntos
Exercício Físico/fisiologia , Derivação Gástrica , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos/fisiologia , Mitocôndrias Musculares/metabolismo , Obesidade/cirurgia , Redução de Peso/fisiologia , Adulto , Glicemia/metabolismo , Feminino , Teste de Tolerância a Glucose , Humanos , Insulina/sangue , Masculino , Pessoa de Meia-Idade , Obesidade/metabolismo
5.
PLoS Genet ; 9(12): e1004020, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24385923

RESUMO

Recent work has identified changes in the metabolism of the aromatic amino acid tyrosine as a risk factor for diabetes and a contributor to the development of liver cancer. While these findings could suggest a role for tyrosine as a direct regulator of the behavior of cells and tissues, evidence for this model is currently lacking. Through the use of RNAi and genetic mutants, we identify tatn-1, which is the worm ortholog of tyrosine aminotransferase and catalyzes the first step of the conserved tyrosine degradation pathway, as a novel regulator of the dauer decision and modulator of the daf-2 insulin/IGF-1-like (IGFR) signaling pathway in Caenorhabditis elegans. Mutations affecting tatn-1 elevate tyrosine levels in the animal, and enhance the effects of mutations in genes that lie within the daf-2/insulin signaling pathway or are otherwise upstream of daf-16/FOXO on both dauer formation and worm longevity. These effects are mediated by elevated tyrosine levels as supplemental dietary tyrosine mimics the phenotypes produced by a tatn-1 mutation, and the effects still occur when the enzymes needed to convert tyrosine into catecholamine neurotransmitters are missing. The effects on dauer formation and lifespan require the aak-2/AMPK gene, and tatn-1 mutations increase phospho-AAK-2 levels. In contrast, the daf-16/FOXO transcription factor is only partially required for the effects on dauer formation and not required for increased longevity. We also find that the controlled metabolism of tyrosine by tatn-1 may function normally in dauer formation because the expression of the TATN-1 protein is regulated both by daf-2/IGFR signaling and also by the same dietary and environmental cues which influence dauer formation. Our findings point to a novel role for tyrosine as a developmental regulator and modulator of longevity, and support a model where elevated tyrosine levels play a causal role in the development of diabetes and cancer in people.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Longevidade/genética , Redes e Vias Metabólicas/genética , Tirosina Transaminase/genética , Tirosina/genética , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Fatores de Transcrição Forkhead , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde , Humanos , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Mutação , Interferência de RNA , Receptor de Insulina/metabolismo , Fatores de Transcrição/genética , Tirosina/metabolismo
6.
Am J Physiol Endocrinol Metab ; 298(1): E49-58, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19887598

RESUMO

Insulin resistance in skeletal muscle in obesity and T2DM is associated with reduced muscle oxidative capacity, reduced expression in nuclear genes responsible for oxidative metabolism, and reduced activity of mitochondrial electron transport chain. The presented study was undertaken to analyze mitochondrial content and mitochondrial enzyme profile in skeletal muscle of sedentary lean individuals and to compare that with our previous data on obese or obese T2DM group. Frozen skeletal muscle biopsies obtained from lean volunteers were used to estimate cardiolipin content, mtDNA (markers of mitochondrial mass), NADH oxidase activity of mitochondrial electron transport chain (ETC), and activity of citrate synthase and beta-hydroxyacyl-CoA dehydrogenase (beta-HAD), key enzymes of TCA cycle and beta-oxidation pathway, respectively. Frozen biopsies collected from obese or T2DM individuals in our previous studies were used to estimate activity of beta-HAD. The obtained data were complemented by data from our previous studies and statistically analyzed to compare mitochondrial content and mitochondrial enzyme profile in lean, obese, or T2DM cohort. The total activity of NADH oxidase was reduced significantly in obese or T2DM subjects. The cardiolipin content for lean or obese group was similar, and although for T2DM group cardiolipin showed a tendency to decline, it was statistically insignificant. The total activity of citrate synthase for lean and T2DM group was similar; however, it was increased significantly in the obese group. Activity of beta-HAD and mtDNA content was similar for all three groups. We conclude that the total activity of NADH oxidase in biopsy for lean group is significantly higher than corresponding activity for obese or T2DM cohort. The specific activity of NADH oxidase (per mg cardiolipin) and NADH oxidase/citrate synthase and NADH oxidase/beta-HAD ratios are reduced two- to threefold in both T2DM and obesity.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Transporte de Elétrons/fisiologia , Mitocôndrias/enzimologia , Obesidade/metabolismo , Fosforilação Oxidativa , Músculo Quadríceps/metabolismo , 3-Hidroxiacil-CoA Desidrogenases/metabolismo , Adulto , Biópsia , Glicemia/metabolismo , Cardiolipinas/metabolismo , Citrato (si)-Sintase/metabolismo , DNA Mitocondrial/metabolismo , Humanos , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos/fisiologia , Pessoa de Meia-Idade , Mitocôndrias/patologia , Complexos Multienzimáticos/metabolismo , NAD/metabolismo , NADH NADPH Oxirredutases/metabolismo , Músculo Quadríceps/patologia , Ácido Tricloroacético/metabolismo
7.
Diabetes ; 56(8): 2142-7, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17536063

RESUMO

OBJECTIVE: Reduced mitochondrial capacity in skeletal muscle occurs in type 2 diabetic patients and in those at increased risk for this disorder, but the extent to which mitochondrial dysfunction in type 2 diabetic patients is remediable by physical activity and weight loss intervention is uncertain. We sought to address whether an intervention of daily moderate-intensity exercise combined with moderate weight loss can increase skeletal muscle mitochondrial content in type 2 diabetic patients and to address the relationship with amelioration of insulin resistance and hyperglycemia. RESEARCH DESIGN AND METHODS: Muscle biopsies were obtained before and after a 4-month intervention to assess mitochondrial morphology, mitochondrial DNA content, and mitochondrial enzyme activities. Glucose control, body composition, aerobic fitness, and insulin sensitivity were measured. RESULTS: In response to a weight loss of 7.1 +/- 0.8% and a 12 +/- 1.6% improvement in Vo(2max) (P < 0.05), insulin sensitivity improved by 59 +/- 21% (P < 0.05). There were significant increases in skeletal muscle mitochondrial density (by 67 +/- 17%, P < 0.01), cardiolipin content (55 +/- 17%, P < 0.01), and mitochondrial oxidation enzymes. Energy expenditure during physical activity correlated with the degree of improvement in insulin sensitivity (r = 0.84, P < 0.01), and, in turn, improvement in mitochondrial content was a strong correlate of intervention-induced improvement in A1C and fasting plasma glucose. CONCLUSIONS: Intensive short-term lifestyle modifications can restore mitochondrial content and functional capacity in skeletal muscle in type 2 diabetic patients. The improvement in the oxidative capacity of skeletal muscle may be a key component mediating salutary effects of lifestyle interventions on hyperglycemia and insulin resistance.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/terapia , Terapia por Exercício , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Adulto , Biópsia , Diabetes Mellitus Tipo 2/patologia , Humanos , Insulina/sangue , Microscopia Eletrônica de Transmissão , Pessoa de Meia-Idade , Músculo Esquelético/ultraestrutura , Redução de Peso
8.
J Appl Physiol (1985) ; 103(1): 21-7, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17332268

RESUMO

There are fewer mitochondria and a reduced oxidative capacity in skeletal muscle in obesity. Moderate-intensity physical activity combined with weight loss increase oxidative enzyme activity in obese sedentary adults; however, this adaptation occurs without a significant increase in mitochondrial DNA (mtDNA), which is unlike the classic pattern of mitochondrial biogenesis induced by vigorous activity. The objective of this study was to examine the hypothesis that the mitochondrial adaptation to moderate-intensity exercise and weight loss in obesity induces increased mitochondrial cristae despite a lack of mtDNA proliferation. Content of cardiolipin and mtDNA and enzymatic activities of the electron transport chain (ETC) and tricarboxylic acid cycle were measured in biopsy samples of vastus lateralis muscle obtained from sedentary obese men and women before and following a 4-mo walking intervention combined with weight loss. Cardiolipin increased by 60% from 47 +/- 4 to 74 +/- 8 microg/mU CK (P < 0.01), but skeletal muscle mtDNA content did not change significantly (1,901 +/- 363 to 2,169 +/- 317 Rc, where Rc is relative copy number of mtDNA per diploid nuclear genome). Enzyme activity of the ETC increased (P < 0.01); that for rotenone-sensitive NADH-oxidase (96 +/- 1%) increased more than for ubiquinol-oxidase (48 +/- 6%). Activities for citrate synthase and succinate dehydrogenase increased by 29 +/- 9% and 40 +/- 6%, respectively. In conclusion, moderate-intensity physical activity combined with weight loss induces skeletal muscle mitochondrial biogenesis in previously sedentary obese men and women, but this response occurs without mtDNA proliferation and may be characterized by an increase in mitochondrial cristae.


Assuntos
Dieta com Restrição de Gorduras , Terapia por Exercício , Mitocôndrias Musculares/metabolismo , Membranas Mitocondriais/metabolismo , Obesidade/terapia , Fosforilação Oxidativa , Músculo Quadríceps/metabolismo , Redução de Peso , Adaptação Fisiológica , Adulto , Cardiolipinas/metabolismo , Citrato (si)-Sintase/metabolismo , Ciclo do Ácido Cítrico , DNA Mitocondrial/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Ingestão de Energia , Feminino , Humanos , Masculino , Mitocôndrias Musculares/enzimologia , Mitocôndrias Musculares/patologia , Membranas Mitocondriais/enzimologia , Membranas Mitocondriais/patologia , Obesidade/dietoterapia , Obesidade/metabolismo , Obesidade/patologia , Obesidade/fisiopatologia , Oxirredutases/metabolismo , Músculo Quadríceps/enzimologia , Músculo Quadríceps/patologia , Músculo Quadríceps/fisiopatologia , Succinato Desidrogenase/metabolismo , Fatores de Tempo , Resultado do Tratamento
9.
Diabetes ; 55 Suppl 2: S48-54, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17130644

RESUMO

Interleukin (IL)-6 is a pleiotropic hormone that has both proinflammatory and anti-inflammatory actions. AMP-activated protein kinase (AMPK) is a fuel-sensing enzyme that among its other actions responds to decreases in cellular energy state by enhancing processes that generate ATP and inhibiting others that consume ATP but are not acutely necessary for survival. IL-6 is synthesized and released from skeletal muscle in large amounts during exercise, and in rodents, the resultant increase in its concentration correlates temporally with increases in AMPK activity in multiple tissues. That IL-6 may be responsible in great measure for these increases in AMPK is suggested by the fact it increases AMPK activity both in muscle and adipose tissue in vivo and in incubated muscles and cultured adipocytes. In addition, we have found that AMPK activity is diminished in muscle and adipose tissue of 3-month-old IL-6 knockout (KO) mice at rest and that the absolute increases in AMPK activity in these tissues caused by exercise is diminished compared with control mice. Except for an impaired ability to exercise and to oxidize fatty acids, the IL-6 KO mouse appears normal at 3 months of age. On the other hand, by age 9 months, it manifests many of the abnormalities of the metabolic syndrome including obesity, dyslipidemia, and impaired glucose tolerance. This, plus the association of decreased AMPK activity with similar abnormalities in a number of other rodents, suggests that a decrease in AMPK activity may be a causal factor. Whether increases in IL-6, by virtue of their effects on AMPK, contribute to the reported ability of exercise to diminish the prevalence of type 2 diabetes, coronary heart disease, and other disorders associated with the metabolic syndrome remains to be determined.


Assuntos
Interleucina-6/fisiologia , Complexos Multienzimáticos/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Quinases Ativadas por AMP , Tecido Adiposo/fisiologia , Animais , Ativação Enzimática/fisiologia , Exercício Físico/fisiologia , Humanos , Síndrome Metabólica/fisiopatologia , Camundongos , Músculo Esquelético/fisiologia
10.
J Gerontol A Biol Sci Med Sci ; 61(6): 534-40, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16799133

RESUMO

Skeletal muscle mitochondria are implicated with age-related loss of function and insulin resistance. We examined the effects of exercise on skeletal muscle mitochondria in older (age = 67.3 +/- 0.6 years) men (n = 5) and women (n = 3). Similar increases in (p <.01) cardiolipin (88.2 +/- 9.0 to 130.6 +/- 7.5 microg/mU creatine kinase activity [CK]) and the total mitochondrial DNA (1264 +/- 170 to 1895 +/- 273 copies per diploid of nuclear genome) reflected increased mitochondria content. Succinate oxidase activity, complexes 2-4 of the electron transport chain (ETC), increased from 0.13 +/- 0.02 to 0.20 +/- 0.02 U/mU CK (p <.01). This improvement was more pronounced (p <.05) in subsarcolemmal (127 +/- 48%) compared to intermyofibrillar (56 +/- 12%) mitochondria. NADH oxidase activity, representing total ETC activity, increased from 0.51 +/- 0.09 to 1.00 +/- 0.09 U/mU CK (p <.01). In conclusion, exercise enhances mitochondria ETC activity in older human skeletal muscle, particularly in subsarcolemmal mitochondria, which is likely related to the concomitant increases in mitochondrial biogenesis.


Assuntos
Envelhecimento/fisiologia , Exercício Físico/fisiologia , Mitocôndrias Musculares/metabolismo , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Idoso , Biópsia , Cardiolipinas/metabolismo , Cromatografia Líquida de Alta Pressão , Creatina Quinase/metabolismo , DNA Mitocondrial/metabolismo , Teste de Esforço , Feminino , Seguimentos , Humanos , Masculino , Músculo Esquelético/citologia , Oxirredutases/metabolismo , Espectrofotometria
11.
J Chromatogr B Analyt Technol Biomed Life Sci ; 831(1-2): 63-71, 2006 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-16337440

RESUMO

Cardiolipin is a phospholipid that is specific to the inner mitochondrial membrane and essential for numerous mitochondrial functions. Accordingly, a quantitative assay for cardiolipin can be a valuable aspect of assessing mitochondrial content and functional capacity. The current study was undertaken to develop a simple and reliable method for direct analysis of the major molecular species of cardiolipin and with particular application for analysis of human skeletal muscle. The method that is presented is based on derivatization of cardiolipin in a total lipid extract with 1-pyrenyldiazomethane (PDAM), to form stable, fluorescent 1-pyrenylmethyl esters. The derivatization reaction takes 30 min on ice in a two-phase system (chloroform:methanol:H(2)O:H(2)SO(4)) containing 0.5-1.0mM PDAM and detergent. The contents of the major cardiolipin species in the derivatization mixture can be estimated by HPLC separation with fluorescent detection during a 20 min run on a reverse phase column and with HPLC grade ethanol/0.5mM H(3)PO(4) as the mobile phase. The recovery is about 80%. The method is specific and sensitive with quantitation limits of 0.5-1 pmol cardiolipin. The response of the fluorescence detector (peak area) is linear across a range 5-40 pmol. The assay is linear over the range between 0.3 and 3.0mg of tissue (R(2)=0.998). The assay provides good reproducibility and accuracy (within 5-10%).


Assuntos
Cardiolipinas/análise , Músculo Esquelético/química , Biópsia , Cardiolipinas/química , Cardiolipinas/isolamento & purificação , Cromatografia Líquida de Alta Pressão/métodos , Creatina Quinase/isolamento & purificação , Humanos , Pirenos/química , Reprodutibilidade dos Testes , Espectrometria de Fluorescência
12.
Diabetes ; 54(1): 8-14, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15616005

RESUMO

The current study addresses a novel hypothesis of subcellular distribution of mitochondrial dysfunction in skeletal muscle in type 2 diabetes. Vastus lateralis muscle was obtained by percutaneous biopsy from 11 volunteers with type 2 diabetes; 12 age-, sex-, and weight-matched obese sedentary nondiabetic volunteers; and 8 lean volunteers. Subsarcolemmal and intermyofibrillar mitochondrial fractions were isolated by differential centrifugation and digestion techniques. Overall electron transport chain activity was similar in type 2 diabetic and obese subjects, but subsarcolemmal mitochondria electron transport chain activity was reduced in type 2 diabetic subjects (0.017 +/- 0.003 vs. 0.034 +/- 0.007 units/mU creatine kinase [CK], P = 0.01) and sevenfold reduced compared with lean subjects (P < 0.01). Electron transport chain activity in intermyofibrillar mitochondria was similar in type 2 diabetic and obese subjects, though reduced compared with lean subjects. A reduction in subsarcolemmal mitochondria was confirmed by transmission electron microscopy. Although mtDNA was lower in type 2 diabetic and obese subjects, the decrement in electron transport chain activity was proportionately greater, indicating functional impairment. Because of the potential importance of subsarcolemmal mitochondria for signal transduction and substrate transport, this deficit may contribute to the pathogenesis of muscle insulin resistance in type 2 diabetes.


Assuntos
DNA Mitocondrial/genética , Complicações do Diabetes/genética , Diabetes Mellitus Tipo 2/genética , Mitocôndrias/patologia , Obesidade/genética , Sarcolema/patologia , Adulto , Sequência de Bases , Glicemia/metabolismo , Índice de Massa Corporal , Primers do DNA , Complicações do Diabetes/patologia , Diabetes Mellitus Tipo 2/patologia , Feminino , Técnica Clamp de Glucose , Hemoglobinas Glicadas/análise , Humanos , Resistência à Insulina , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Músculo Esquelético/ultraestrutura , Obesidade/patologia , Valores de Referência
13.
Am J Physiol Endocrinol Metab ; 288(4): E818-25, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15585590

RESUMO

The current study was undertaken to address responsiveness of skeletal muscle mitochondrial electron transport chain (ETC) activity to weight loss (WL) and exercise in overweight or obese, sedentary volunteers. Fourteen middle-aged participants (7 male/7 female) had assessments of mitochondrial ETC activity and mitochondrial (mt)DNA in vastus lateralis muscle, obtained by percutaneous biopsy, before and after a 16-wk intervention. Mean WL was 9.7 (1.5%) and the mean increase in Vo(2 max) was [means (SD)] 21.7 (3.7)%. Total ETC activity increased significantly, from 0.13 (0.02) to 0.19 (0.03) U/mU creatine kinase (CK; P < 0.001). ETC activity was also assessed in mitochondria isolated into subsarcolemmal (SSM) and intermyofibrillar (IMF-M) fractions. In response to intervention, there was a robust increase of ETC activity in SSM (0.028 (0.007) to 0.046 (0.011) U/mU CK, P < 0.001), and in IMF-M [0.101 (0.015) to 0.148 (0.018) U/mU CK, P < 0.005]. At baseline, the percentage of ETC activity contained in the SSM fraction was low and remained unchanged following intervention [19 (3) vs. 22 (2)%], despite the increase in ETC activity. Also, muscle mtDNA content did not change significantly [1665 (213) vs. 1874 (214) mtDNA/nuclear DNA], denoting functional improvement rather than proliferation of mitochondria as the principal mechanism of enhanced ETC activity. Increases in ETC activity were correlated with energy expenditure during exercise sessions, and ETC activity in SSM correlated with insulin sensitivity after adjustment for Vo(2 max). In summary, skeletal muscle ETC activity is increased by WL and exercise in previously sedentary obese men and women. We conclude that improved skeletal muscle ETC activity following moderate WL and improved aerobic capacity contributes to associated alleviation of insulin resistance.


Assuntos
Exercício Físico/fisiologia , Mitocôndrias Musculares/fisiologia , Músculo Esquelético/fisiologia , Obesidade/fisiopatologia , Redução de Peso/fisiologia , Adulto , Estudos de Coortes , DNA Mitocondrial/química , DNA Mitocondrial/genética , Transporte de Elétrons/fisiologia , Feminino , Humanos , Resistência à Insulina/fisiologia , Masculino , Microscopia Eletrônica de Transmissão , Músculo Esquelético/ultraestrutura , Reação em Cadeia da Polimerase , Sarcolema/fisiologia , Sarcolema/ultraestrutura
14.
Nat Chem Biol ; 1(4): 223-32, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16408039

RESUMO

Programmed death (apoptosis) is turned on in damaged or unwanted cells to secure their clean and safe self-elimination. The initial apoptotic events are coordinated in mitochondria, whereby several proapoptotic factors, including cytochrome c, are released into the cytosol to trigger caspase cascades. The release mechanisms include interactions of B-cell/lymphoma 2 family proteins with a mitochondria-specific phospholipid, cardiolipin, to cause permeabilization of the outer mitochondrial membrane. Using oxidative lipidomics, we showed that cardiolipin is the only phospholipid in mitochondria that undergoes early oxidation during apoptosis. The oxidation is catalyzed by a cardiolipin-specific peroxidase activity of cardiolipin-bound cytochrome c. In a previously undescribed step in apoptosis, we showed that oxidized cardiolipin is required for the release of proapoptotic factors. These results provide insight into the role of reactive oxygen species in triggering the cell-death pathway and describe an early role for cytochrome c before caspase activation.


Assuntos
Apoptose/fisiologia , Cardiolipinas/metabolismo , Citocromos c/metabolismo , Oxigenases/metabolismo , Animais , Proteínas Reguladoras de Apoptose , Células HL-60 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Oxirredução , Transdução de Sinais
15.
Diabetes ; 51(10): 2944-50, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12351431

RESUMO

Skeletal muscle is strongly dependent on oxidative phosphorylation for energy production. Because the insulin resistance of skeletal muscle in type 2 diabetes and obesity entails dysregulation of the oxidation of both carbohydrate and lipid fuels, the current study was undertaken to examine the potential contribution of perturbation of mitochondrial function. Vastus lateralis muscle was obtained by percutaneous biopsy during fasting conditions from lean (n = 10) and obese (n = 10) nondiabetic volunteers and from volunteers with type 2 diabetes (n = 10). The activity of rotenone-sensitive NADH:O(2) oxidoreductase, reflecting the overall activity of the respiratory chain, was measured in a mitochondrial fraction by a novel method based on providing access for NADH to intact mitochondria via alamethicin, a channel-forming antibiotic. Creatine kinase and citrate synthase activities were measured as markers of myocyte and mitochondria content, respectively. Activity of rotenone-sensitive NADH:O(2) oxidoreductase was normalized to creatine kinase activity, as was citrate synthase activity. NADH:O(2) oxidoreductase activity was lowest in type 2 diabetic subjects and highest in the lean volunteers (lean 0.95 +/- 0.17, obese 0.76 +/- 0.30, type 2 diabetes 0.56 +/- 0.14 units/mU creatine kinase; P < 0.005). Also, citrate synthase activity was reduced in type 2 diabetic patients (lean 3.10 +/- 0.74, obese 3.24 +/- 0.82, type 2 diabetes 2.48 +/- 0.47 units/mU creatine kinase; P < 0.005). As measured by electron microscopy, skeletal muscle mitochondria were smaller in type 2 diabetic and obese subjects than in muscle from lean volunteers (P < 0.01). We conclude that there is an impaired bioenergetic capacity of skeletal muscle mitochondria in type 2 diabetes, with some impairment also present in obesity.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Mitocôndrias/enzimologia , Músculo Esquelético/metabolismo , Adulto , Citrato (si)-Sintase/metabolismo , Transporte de Elétrons , Feminino , Humanos , Resistência à Insulina/fisiologia , Masculino , Microscopia Eletrônica , Mitocôndrias/ultraestrutura , NADH NADPH Oxirredutases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA