Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 16800, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34408243

RESUMO

Cardiopulmonary bypass (CPB) is a standard technique for cardiac surgery, but comes with the risk of severe neurological complications (e.g. stroke) caused by embolisms and/or reduced cerebral perfusion. We report on an aortic cannula prototype design (optiCAN) with helical outflow and jet-splitting dispersion tip that could reduce the risk of embolic events and restores cerebral perfusion to 97.5% of physiological flow during CPB in vivo, whereas a commercial curved-tip cannula yields 74.6%. In further in vitro comparison, pressure loss and hemolysis parameters of optiCAN remain unaffected. Results are reproducibly confirmed in silico for an exemplary human aortic anatomy via computational fluid dynamics (CFD) simulations. Based on CFD simulations, we firstly show that optiCAN design improves aortic root washout, which reduces the risk of thromboembolism. Secondly, we identify regions of the aortic intima with increased risk of plaque release by correlating areas of enhanced plaque growth and high wall shear stresses (WSS). From this we propose another easy-to-manufacture cannula design (opti2CAN) that decreases areas burdened by high WSS, while preserving physiological cerebral flow and favorable hemodynamics. With this novel cannula design, we propose a cannulation option to reduce neurological complications and the prevalence of stroke in high-risk patients after CPB.


Assuntos
Aorta/cirurgia , Cânula/normas , Procedimentos Cirúrgicos Cardíacos/instrumentação , Ponte Cardiopulmonar/métodos , Animais , Circulação Cerebrovascular/fisiologia , Simulação por Computador , Modelos Animais de Doenças , Hemodinâmica , Humanos , Fatores de Risco , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/prevenção & controle , Suínos , Tromboembolia/fisiopatologia , Tromboembolia/prevenção & controle
2.
Intensive Care Med Exp ; 5(1): 34, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28766276

RESUMO

BACKGROUND: Veno-venous extracorporeal CO2 removal (vv-ECCO2R) is increasingly being used in the setting of acute respiratory failure. Blood flow rates through the device range from 200 ml/min to more than 1500 ml/min, and the membrane surface areas range from 0.35 to 1.3 m2. The present study in an animal model with similar CO2 production as an adult patient was aimed at determining the optimal membrane lung surface area and technical requirements for successful vv-ECCO2R. METHODS: Four different membrane lungs, with varying lung surface areas of 0.4, 0.8, 1.0, and 1.3m2 were used to perform vv-ECCO2R in seven anesthetized, mechanically ventilated, pigs with experimentally induced severe respiratory acidosis (pH 7.0-7.1) using a 20Fr double-lumen catheter with a sweep gas flow rate of 8 L/min. During each experiment, the blood flow was increased stepwise from 250 to 1000 ml/min. RESULTS: Amelioration of severe respiratory acidosis was only feasible when blood flow rates from 750 to 1000 ml/min were used with a membrane lung surface area of at least 0.8 m2. Maximal CO2 elimination was 150.8 ml/min, with pH increasing from 7.01 to 7.30 (blood flow 1000 ml/min; membrane lung 1.3 m2). The membrane lung with a surface of 0.4 m2 allowed a maximum CO2 elimination rate of 71.7 mL/min, which did not result in the normalization of pH, even with a blood flow rate of 1000 ml/min. Also of note, an increase of the surface area above 1.0 m2 did not result in substantially higher CO2 elimination rates. The pressure drop across the oxygenator was considerably lower (<10 mmHg) in the largest membrane lung, whereas the smallest revealed a pressure drop of more than 50 mmHg with 1000 ml blood flow/min. CONCLUSIONS: In this porcine model, vv-ECCO2R was most effective when using blood flow rates ranging between 750 and 1000 ml/min, with a membrane lung surface of at least 0.8 m2. In contrast, low blood flow rates (250-500 ml/min) were not sufficient to completely correct severe respiratory acidosis, irrespective of the surface area of the membrane lung being used. The converse was also true, low surface membrane lungs (0.4 m2) were not capable of completely correcting severe respiratory acidosis across the range of blood flows used in this study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA