Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 422: 126862, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34416689

RESUMO

This work evaluated the fates of linear alkylbenzene sulfonate (LAS), chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), and total nitrogen (TN) when treating greywater (GW) in an oxygen-based membrane biofilm reactor (O2-MBfR). An influent ratio of chemical oxygen demand to total nitrogen (COD/TN) of 20 g COD/g N gave the best removals of LAS, COD, NH4+-N and TN, and it also had the greatest EPS accumulation in the biofilm. Higher EPS and improved performance were linked to increases in the relative abundances of bacteria able to biodegrade LAS (Zoogloea, Pseudomonas, Parvibaculum, Magnetospirillum and Mycobacterium) and to nitrify (Nitrosomonas and Nitrospira), as well as to ammonia oxidation related enzyme (ammonia monooxygenase). The EPS was dominated by protein, which played a key role in adsorbing LAS, achieving short-time protection from LAS toxicity and allowed LAS biodegradation. Continuous high-efficiency removal of LAS alleviated LAS toxicity to microbial physiological functions, including nitrification, nitrate respiration, the tricarboxylic acid (TCA) cycle, and adenosine triphosphate (ATP) production, achieving the stable high-efficient simultaneous removal of organics and nitrogen in the O2-MBfR.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Oxigênio , Ácidos Alcanossulfônicos , Biofilmes , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos
2.
Water Res ; 204: 117627, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34509868

RESUMO

Quorum sensing (QS) has been extensively studied in pure stains of microorganisms, but the ecological roles of QS in multi-species microbial aggregates are poorly understood due to the aggregates' heterogeneity and complexity, in particular the phosphorus (P) entrapment, a key aspect of element cycling. Using periphytic biofilm as a microbial-aggregate model, we addressed how QS signaling via N-acyl-homoserine-lactones (AHLs) regulated P entrapment. The most-abundant AHLs detected were C8-HSL, 3OC8-HSL, and C12-HSL, are the primary regulator of P entrapment in the periphytic biofilm. QS signaling-AHL is a beneficial molecule for bacterial growth in periphytic biofilm and the addition of these three AHLs optimized polyphosphate accumulating organisms (PAOs) community. Growth promotion was accompanied by up-regulation of pyrimidine, purine and energy metabolism. Both intra- and extra-cellular P entrapment were enhanced in the addition of AHLs. AHLs increased extracellular polymeric substances (EPS) production to drive extracellular P entrapment, via up-regulating amino acids biosynthesis and amino sugar/nucleotide sugar metabolism. Also, AHLs improved intracellular P entrapment potential by regulating genes involved in inorganic-P accumulation (ppk, ppx) and P uptake and transport (pit, pstSCAB). This proof-of-concept evidence about how QS signaling regulates P entrapment by microbial aggregates paves the way for managing QS to enhance P removal by microbial aggregates in aquatic environments.


Assuntos
Acil-Butirolactonas , Homosserina , Transporte Biológico , Fósforo , Percepção de Quorum
3.
Biotechnol Bioeng ; 118(7): 2460-2471, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33719058

RESUMO

Selenate (SeO42- ) reduction in hydrogen (H2 )-fed membrane biofilm reactors (H2 -MBfRs) was studied in combinations with other common electron acceptors. We employed H2 -MBfRs with two distinctly different conditions: R1, with ample electron-donor availability and acceptors SeO42- and sulfate (SO42- ), and R2, with electron-donor limitation and the presence of electron acceptors SeO42- , nitrate (NO3- ), and SO42- . Even though H2 was available to reduce all input SeO42- and SO42- in R1, SeO42- reduction was preferred over SO42- reduction. In R2, co-reduction of NO3- and SeO42- occurred, and SO42- reduction was mostly suppressed. Biofilms in all MBfRs had high microbial diversity that was influenced by the "rare biosphere" (RB), phylotypes with relative abundance less than 1%. While all MBfR biofilms had abundant members, such as Dechloromonas and Methyloversatilis, the bacterial communities were significantly different between R1 and R2. For R1, abundant genera were Methyloversatilis, Melioribacter, and Propionivibrio; for R2, abundant genera were Dechloromonas, Hydrogenophaga, Cystobacter, Methyloversatilis, and Thauera. Although changes in electron-acceptor or -donor loading altered the phylogenetic structure of the microbial communities, the biofilm communities were resilient in terms of SeO42- and NO3- reductions, because interacting members of the RB had the capacity of respiring these electron acceptors.


Assuntos
Bactérias , Fenômenos Fisiológicos Bacterianos , Biofilmes/crescimento & desenvolvimento , Reatores Biológicos , Consórcios Microbianos/fisiologia , Filogenia , Ácido Selênico/metabolismo , Bactérias/classificação , Bactérias/crescimento & desenvolvimento
4.
NPJ Biofilms Microbiomes ; 6(1): 12, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32170068

RESUMO

Although the etiology of obesity is not well-understood, genetic, environmental, and microbiome elements are recognized as contributors to this rising pandemic. It is well documented that Roux-en-Y gastric bypass (RYGB) surgery drastically alters the fecal microbiome, but data are sparse on temporal and spatial microbiome and metabolome changes, especially in human populations. We characterized the structure and function (through metabolites) of the microbial communities in the gut lumen and structure of microbial communities on mucosal surfaces in nine morbidly obese individuals before, 6 months, and 12 months after RYGB surgery. Moreover, using a comprehensive multi-omic approach, we compared this longitudinal cohort to a previously studied cross-sectional cohort (n = 24). In addition to the expected weight reduction and improvement in obesity-related comorbidities after RYGB surgery, we observed that the impact of surgery was much greater on fecal communities in comparison to mucosal ones. The changes in the fecal microbiome were linked to increased concentrations of branched-chain fatty acids and an overall decrease in secondary bile acid concentrations. The microbiome and metabolome data sets for this longitudinal cohort strengthen our understanding of the persistent impact of RYGB on the gut microbiome and its metabolism. Our findings highlight the importance of changes in mucosal and fecal microbiomes after RYGB surgery. The spatial modifications in the microbiome after RYGB surgery corresponded to persistent changes in fecal fermentation and bile acid metabolism, both of which are associated with improved metabolic outcomes.


Assuntos
Bactérias/classificação , Derivação Gástrica/efeitos adversos , Metabolômica/métodos , Obesidade/cirurgia , Análise de Sequência de DNA/métodos , Adulto , Bactérias/genética , Bactérias/metabolismo , Ácidos e Sais Biliares/análise , DNA Bacteriano/genética , DNA Ribossômico/genética , Ácidos Graxos/análise , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Obesidade/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Análise Espaço-Temporal
5.
Bioresour Technol ; 268: 266-270, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30081286

RESUMO

A high phosphorus concentration is widely accepted as favorable for enhancing both microalgae growth and lipid accumulation; however, excessively high P could be counter-productive. In this study, we investigated the effects of increasing P levels (5.4, 25, 45, 150, and 250 mg-P L-1) on the heterotrophic cultivation of Chlorella regularis. Microalgae growth was inhibited and cells were severely damaged in response to highly excessive P levels (≥150 mg-P L-1). In particular, 250 mg-P L-1 resulted in a ∼40% decrease in cell density and a ∼70% loss of cell viability. Microalgae damage induced by excessive phosphorus included enlarged cell size, deformation of cell walls, and disorganization of organelles. These negative effects were associated with the over-accumulation of polyphosphates within cells, which may further cause binding of P to intracellular components. Although P is an essential nutrient, excessive P lowers cell growth and viability.


Assuntos
Chlorella/efeitos dos fármacos , Fósforo/toxicidade , Biomassa , Chlorella/crescimento & desenvolvimento , Processos Heterotróficos , Lipídeos , Microalgas , Nitrogênio
6.
Biotechnol Bioeng ; 115(8): 1988-1999, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29704240

RESUMO

Although benzene can be biodegraded when dissolved oxygen is sufficient, delivering oxygen is energy intensive and can lead to air stripping the benzene. Anaerobes can biodegrade benzene by using electron acceptors other than O2 , and this may reduce costs and exposure risks; the drawback is a remarkably slower growth rate. We evaluated a two-step strategy that involved O2 -dependent benzene activation and cleavage followed by intermediate oxidation coupled to NO3- respiration. We employed a membrane biofilm reactor (MBfR) featuring nonporous hollow fibers as the means to deliver O2 directly to a biofilm at an accurately controlled rate. Benzene was mineralized aerobically when the O2 -supply rate was more than sufficient for mineralization. As the O2 -supply capacity was systematically lowered, O2 respiration was gradually replaced by NO3- respiration. When the maximum O2 -supply capacity was only 20% of the demand for benzene mineralization, O2 was used almost exclusively for benzene activation and cleavage, while respiration was almost only by denitrification. Analyses of microbial community structure and predicted metagenomic function reveal that Burkholderiales was dominant and probably utilized monooxygenase activation, with subsequent mineralization coupled to denitrification; strict anaerobes capable of carboxylative activation were not detected. These results open the door for a promising treatment strategy that simultaneously ameliorates technical and economic challenges of aeration and slow kinetics of anaerobic activation of aromatics.


Assuntos
Benzeno/metabolismo , Nitritos/metabolismo , Oxigênio/metabolismo , Aerobiose , Biofilmes/crescimento & desenvolvimento , Reatores Biológicos/microbiologia , Biota , Biotransformação , Burkholderiales/classificação , Burkholderiales/isolamento & purificação , Desnitrificação
7.
ISME J ; 11(9): 2047-2058, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28548658

RESUMO

Roux-en-Y gastric bypass (RYGB) and laparoscopic adjustable gastric banding (LAGB) are anatomically different bariatric operations. RYGB achieves greater weight loss compared with LAGB. Changes in the gut microbiome have been documented after RYGB, but not LAGB, and the microbial contribution to sustainable surgical weight loss warrants further evaluation. We hypothesized that RYGB imposes greater changes on the microbiota and its metabolism than LAGB, and that the altered microbiota may contribute to greater weight loss. Using multi-omic approaches, we analyzed fecal microbial community structure and metabolites of pre-bariatric surgery morbidly obese (PreB-Ob), normal weight (NW), post-RYGB, and post-LAGB participants. RYGB microbiomes were significantly different from those from NW, LAGB and PreB-Ob. Microbiome differences between RYGB and PreB-Ob populations were mirrored in their metabolomes. Diversity was higher in RYGB compared with LAGB, possibly because of an increase in the abundance of facultative anaerobic, bile-tolerant and acid-sensible microorganisms in the former. Possibly because of lower gastric acid exposure, phylotypes from the oral cavity, such as Escherichia, Veillonella and Streptococcus, were in greater abundance in the RYGB group, and their abundances positively correlated with percent excess weight loss. Many of these post-RYGB microorganisms are capable of amino-acid fermentation. Amino-acid and carbohydrate fermentation products-isovalerate, isobutyrate, butyrate and propionate-were prevalent in RYGB participants, but not in LAGB participants. RYGB resulted in greater alteration of the gut microbiome and metabolome than LAGB, and RYGB group exhibited unique microbiome composed of many amino-acid fermenters, compared with nonsurgical controls.


Assuntos
Bactérias/isolamento & purificação , Microbioma Gastrointestinal , Obesidade Mórbida/microbiologia , Obesidade Mórbida/cirurgia , Adulto , Idoso , Bactérias/classificação , Bactérias/genética , Fezes/microbiologia , Feminino , Derivação Gástrica , Gastroplastia , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade Mórbida/metabolismo , Obesidade Mórbida/fisiopatologia , Redução de Peso , Adulto Jovem
8.
Water Res ; 84: 190-7, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26233658

RESUMO

Continuous and batch laboratory experiments were used to evaluate the combined effects of copper and chloramine on ammonia oxidizing microbes present in otherwise high nitrifying water samples. The experimental data were analyzed using a biostability concept and quantified with the biostable residual concentratrion (BRC) of monochloramine, or the concentration that prevents the onset of nitrification. In the batch experiments, copper dosing ≥0.25 mg-Cu L(-1) resulted in complete inhibition of nitrification, and a lower copper dosing (0.1 mg-Cu L(-1)) delayed nitrification. The BRC was systematically lowered with the addition of copper. For example, a free-ammonium concentration of 0.1 mg-N L(-1) had a BRC of 0.73 mg-Cl2 L(-1) with no Cu, but addition of 0.1 mg-Cu L(-1) lowered the BRC to 0.16 mg-Cl2 L(-1), while addition of 0.25 mg-Cu L(-1) eliminated the need to add chloramine (BRC = 0). A non-competitive inhibition model fit the experimental data well with a copper threshold of 0.044 mg-Cu L(-1) and can be used to estimate Cu doses needed to prevent nitrification based on the chloramine concentration. Full scale systems applications need further study.


Assuntos
Amônia/metabolismo , Cloraminas/toxicidade , Cobre/toxicidade , Purificação da Água/métodos , Oxirredução
9.
Environ Sci Technol ; 49(17): 10366-72, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26238158

RESUMO

The mechanisms controlling the accumulation of dissolved methane in anaerobic membrane bioreactors (AnMBRs) treating a synthetic dilute wastewater (a glucose medium) were assessed experimentally and theoretically. The AnMBR was maintained at a temperature of 24-26 °C as the organic loading rate increased from 0.39 to 1.1 kg COD/m(3)-d. The measured concentration of dissolved methane was consistently 2.2- to 2.5-fold larger than the concentration of dissolved methane at thermodynamic equilibrium with the measured CH4 partial pressure, and the fraction of dissolved methane was as high as 76% of the total methane produced. The low gas production rate in the AnMBR significantly slowed the mass transport of dissolved methane to the gas phase. Although the production rate of total methane increased linearly with the COD loading rate, the concentration of dissolved methane only slightly increased with an increasing organic loading rate, because the mass-transfer rate increased by almost 5-fold as the COD loading increased from 0.39 to 1.1 kg COD/m(3)-d. Thus, slow mass transport kinetics exacerbated the situation in which dissolved methane accounted for a substantial fraction of the total methane generated from the AnMBR.


Assuntos
Metano/análise , Águas Residuárias/química , Purificação da Água/métodos , Anaerobiose , Biodegradação Ambiental , Análise da Demanda Biológica de Oxigênio , Biomassa , Reatores Biológicos/microbiologia , Elétrons , Membranas Artificiais , Compostos Orgânicos/análise , Permeabilidade , Solubilidade , Temperatura
10.
J Hazard Mater ; 272: 28-35, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24675611

RESUMO

Sulfate-reducing bacteria (SRB) can produce iron sulfide (FeS) solids with mineralogical characteristics that may be beneficial for a variety of biogeochemical applications, such as long-term immobilization of uranium. In this study, the growth and metabolism of Desulfovibrio vulgaris, one of the best-studied SRB species, were comprehensively monitored in batch studies, and the biogenic FeS solids were characterized by X-ray diffraction. Controlling the pH by varying the initial pH, the iron-to-sulfate ratio, or the electron donor - affected the growth of D. vulgaris and strongly influenced the formation and growth of FeS solids. In particular, lower pH (from initial conditions or a decrease caused by less sulfate reduction, FeS precipitation, or using pyruvate as the electron donor) produced larger-sized mackinawite (Fe1+xS). Greater accumulation of free sulfide, from more sulfate reduction by D. vulgaris, also led to larger-sized mackinawite and particularly stimulated mackinawite transformation to greigite (Fe3S4) when the free sulfide concentration was 29.3mM. Furthermore, sufficient free Fe(2+) led to the additional formation of vivianite [Fe3(PO4)2·8(H2O)]. Thus, microbially relevant conditions (initial pH, choice of electron donor, and excess or deficiency of sulfide) are tools to generate biogenic FeS solids of different characteristics.


Assuntos
Anti-Infecciosos/química , Biodegradação Ambiental , Desulfovibrio vulgaris/metabolismo , Compostos Ferrosos/química , Cristalização , Desulfovibrio vulgaris/crescimento & desenvolvimento , Elétrons , Concentração de Íons de Hidrogênio , Sulfatos/química , Sulfetos/química , Termodinâmica , Poluentes Químicos da Água , Purificação da Água , Difração de Raios X
11.
Biodegradation ; 23(4): 525-34, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22209805

RESUMO

Accidental release of plutonium (Pu) from storage facilities in the subsurface environment is a concern for the safety of human beings and the environment. Given the complexity of the subsurface environment and multivalent state of Pu, we developed a quantitative biogeochemical framework for bioremediation of Pu(V)O(2) (+) in the subsurface environment. We implemented the framework in the biogeochemical model CCBATCH by expanding its chemical equilibrium for aqueous complexation of Pu and its biological sub-models for including Pu's toxicity and reduction reactions. The quantified framework reveals that most of the Pu(V) is speciated as free Pu(V)O(2) (+) ((aq)), which is a problem if the concentration of free Pu(V)O(2) (+) is ≥28 µM (the half-maximum toxicity value for bacteria able to reduce Pu(V) to Pu(III)PO(4(am))) or ≥250 µM (the full-toxicity value that takes the bioreduction rate to zero). The framework includes bioreduction of Fe(3+) to Fe(2+), which abiotically reduces Pu(V)O(2) (+) to Pu(IV) and then to Pu(III). Biotic (enzymatic) reduction of Pu(V)O(2) (+) directly to Pu(III) by Shewanella alga (S. alga) is also included in the framework. Modeling results also reveal that for formation of Pu(III)PO(4(am)), the desired immobile product, the concentration of coexisting model strong ligand-nitrilotriacetic acid (NTA)-should be less than or equal to the concentration of total Pu(III).


Assuntos
Plutônio/metabolismo , Shewanella/metabolismo , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Modelos Biológicos , Oxirredução , Plutônio/química , Poluentes Químicos da Água/química
12.
Water Sci Technol ; 63(12): 2923-8, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22049720

RESUMO

Increased tightening of air regulations is leading more electric utilities to install flue gas desulfurization (FGD) systems. These systems produce brine containing high concentrations of nitrate, nitrite, and selenate which must be removed before discharge. The H2-based membrane biofilm reactor (MBfR) was shown to consistently remove nitrate, nitrite, and selenate at high efficiencies. The maximum selenate removal flux reached 362 mgSe m(-2)d(-1) and was higher than that observed in earlier research, which shows continual improvement of the biofilm for selenate reduction. A low pH of 6.8 inhibited precipitation when treating actual FGD brine, yet did not inhibit removal. SO4(2-) was not removed and therefore did not compete with nitrate, nitrite, and selenate reduction for the available H2.


Assuntos
Biofilmes/crescimento & desenvolvimento , Reatores Biológicos/microbiologia , Membranas Artificiais , Nitratos/isolamento & purificação , Compostos de Selênio/isolamento & purificação , Dióxido de Enxofre/isolamento & purificação , Purificação da Água/métodos , Biodegradação Ambiental , Desenho de Equipamento , Concentração de Íons de Hidrogênio , Modelos Teóricos , Oxirredução , Ácido Selênico , Purificação da Água/instrumentação
13.
Bioresour Technol ; 102(10): 6360-4, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21454073

RESUMO

The H(2)-based membrane biofilm reactor (MBfR) was shown to consistently remove nitrate, nitrite, and selenate at high efficiencies from flue-gas desulfurization brine. Selenate was removed to <50 ppb which is the National Pollutant Discharge Elimination System (NPDES) criteria for the brine to be released into the environment. When selenate was removed to <50 ppb, nitrate and nitrite were still present in the mg/L range which suggests that selenate is able to be secondarily reduced to low levels when nitrate and nitrite serve as the main electron acceptors for bacterial growth. SO(4)(2-) was not removed and therefore did not compete with nitrate and selenate reduction for the available H(2).


Assuntos
Biofilmes , Reatores Biológicos , Gases/química , Hidrogênio/química , Membranas Artificiais , Compostos de Selênio/isolamento & purificação , Enxofre/isolamento & purificação , Limite de Detecção , Ácido Selênico
14.
Environ Sci Technol ; 43(8): 2911-8, 2009 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-19475970

RESUMO

Unintentional, indirect wastewater reuse often occurs as wastewater treatment plant (WWTP) discharges contaminate receiving waters serving as drinking-water supplies. A survey was conducted at 23 WWTPs that utilized a range of treatment technologies. Samples were analyzed for typical wastewater and drinking-water constituents, chemical characteristics of the dissolved organic matter (DOM), and disinfection byproduct (DBP) precursors present in the effluent organic matter (EfOM). This was the first large-scale assessment of the critical water quality parameters that affect the formation of potential carcinogens during drinking water treatment relative to the discharge of upstream WWTPs. This study considered a large and wide range of variables, including emerging contaminants rarely studied at WWTPs and never before in one study. This paper emphasizesthe profound impact of nitrification on many measures of effluent water quality, from the obvious wastewater parameters (e.g., ammonia, biochemical oxygen demand) to the ones specific to downstream drinking water treatment plants (e.g., formation potentialsfor a diverse group of DBPs of health concern). Complete nitrification reduced the concentration of biodegradable dissolved organic carbon (BDOC) and changed the ratio of BDOC/DOC. Although nitrification reduced ultraviolet absorbance (UVA) at 254 nm, it resulted in an increase in specific UVA (UVA/DOC). This is attributed to preferential removal of the less UV-absorbing (nonhumic) fraction of the DOC during biological treatment. EfOM is composed of hydrophilic and biodegradable DOM, as well as hydrophobic and recalcitrant DOM, whose proportions change with advanced biological treatment. The onset of nitrification yielded lower precursor levels for haloacetic acids and nitrogenous DBPs (haloacetonitriles, N-nitrosodimethylamine). However, trihalomethane precursors were relatively unaffected by the level of wastewater treatment Thus, one design/operations parameter in wastewater treatment, the decision to have a long enough solids retention time to get reliable nitrification, affected much beyond its immediate goal of ammonium oxidation.


Assuntos
Carbono/química , Desinfetantes/química , Substâncias Húmicas , Nitrogênio/química , Poluentes da Água/isolamento & purificação
15.
Proc Natl Acad Sci U S A ; 106(7): 2365-70, 2009 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-19164560

RESUMO

Recent evidence suggests that the microbial community in the human intestine may play an important role in the pathogenesis of obesity. We examined 184,094 sequences of microbial 16S rRNA genes from PCR amplicons by using the 454 pyrosequencing technology to compare the microbial community structures of 9 individuals, 3 in each of the categories of normal weight, morbidly obese, and post-gastric-bypass surgery. Phylogenetic analysis demonstrated that although the Bacteria in the human intestinal community were highly diverse, they fell mainly into 6 bacterial divisions that had distinct differences in the 3 study groups. Specifically, Firmicutes were dominant in normal-weight and obese individuals but significantly decreased in post-gastric-bypass individuals, who had a proportional increase of Gammaproteobacteria. Numbers of the H(2)-producing Prevotellaceae were highly enriched in the obese individuals. Unlike the highly diverse Bacteria, the Archaea comprised mainly members of the order Methanobacteriales, which are H(2)-oxidizing methanogens. Using real-time PCR, we detected significantly higher numbers of H(2)-utilizing methanogenic Archaea in obese individuals than in normal-weight or post-gastric-bypass individuals. The coexistence of H(2)-producing bacteria with relatively high numbers of H(2)-utilizing methanogenic Archaea in the gastrointestinal tract of obese individuals leads to the hypothesis that interspecies H(2) transfer between bacterial and archaeal species is an important mechanism for increasing energy uptake by the human large intestine in obese persons. The large bacterial population shift seen in the post-gastric-bypass individuals may reflect the double impact of the gut alteration caused by the surgical procedure and the consequent changes in food ingestion and digestion.


Assuntos
Derivação Gástrica/efeitos adversos , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Obesidade/patologia , Obesidade/cirurgia , Adulto , Archaea/metabolismo , Índice de Massa Corporal , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Dados de Sequência Molecular , Obesidade/microbiologia , Complicações Pós-Operatórias , RNA Ribossômico 16S/química , Análise de Sequência de DNA
16.
Biotechnol Bioeng ; 102(3): 749-58, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18828179

RESUMO

We first constructed full stoichiometry, including cell synthesis, for glucose mixed-acid fermentation at different initial substrate concentrations (0.8-6 g-glucose/L) and pH conditions (final pH 4.0-8.6), based on experimentally determined electron-equivalent balances. The fermentative bioH2 reactions had good electron closure (-9.8 to +12.7% for variations in glucose concentration and -3 to +2% for variations in pH), and C, H, and O errors were below 1%. From the stoichiometry, we computed the ATP yield based on known fermentation pathways. Glucose-variation tests (final pH 4.2-5.1) gave a consistent fermentation pattern of acetate + butyrate + large H2, while pH significantly shifted the catabolic pattern: acetate + butyrate + large H2 at final pH 4.0, acetate + ethanol + modest H2 at final pH 6.8, and acetate + lactate + trivial H2 at final pH 8.6. When lactate or propionate was a dominant soluble end product, the H2 yield was very low, which is in agreement with the theory that reduced ferredoxin (Fd(red)) formation is required for proton reduction to H2. Also consistent with this hypothesis is that high H2 production correlated with a high ratio of butyrate to acetate. Biomass was not a dominant sink for electron equivalents in H2 formation, but became significant (12%) for the lowest glucose concentration (i.e., the most oligotrophic condition). The fermenting bacteria conserved energy similarly at approximately 3 mol ATP/mol glucose (except 0.8 g-glucose/L, which had approximately 3.5 mol ATP/mol glucose) over a wide range of H2 production. The observed biomass yield did not correlate with ATP conservation; low observed biomass yields probably were caused by accelerated rates of decay or production of soluble microbial products.


Assuntos
Bactérias/metabolismo , Metabolismo Energético , Fermentação , Glucose/metabolismo , Hidrogênio/metabolismo , Acetatos/metabolismo , Trifosfato de Adenosina/metabolismo , Algoritmos , Biomassa , Reatores Biológicos , Butiratos/metabolismo , Dióxido de Carbono/metabolismo , Fenômenos Químicos , Concentração de Íons de Hidrogênio , Esgotos
17.
J Microbiol Biotechnol ; 18(6): 1121-9, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18600057

RESUMO

A series of steady-state and short-term experiments on a three-phase circulating-bed biofilm reactor (CBBR) for removing toluene from gas streams were conducted to investigate the effect of macroporous-carrier size (1-mm cubes versus 4-mm cubes, which have the same total surface area) on CBBR performance. Experimental conditions were identical, except for the carrier size. The CBBR with 1-mm carriers (the 1-mm CBBR) overcame the performance limitation observed with the CBBR with 4-mm carriers (the 4-mm CBBR): oxygen depletion inside the biofilm. The 1-mm CBBR consistently had the superior removal efficiencies of toluene and COD, higher than 93% for all, and the advantage was greatest for the highest toluene loading, 0.12 M/m2-day. The 1-mm carriers achieved superior performance by minimizing the negative effects of oxygen depletion, because they had 4.7 to 6.8 times thinner biofilm depths. The 1-mm carriers continued to provide protection from excess biomass detachment and inhibition from toluene. Finally, the 1-mm CBBR achieved volumetric removal capacities up to 300 times greater than demonstrated by other biofilters treating toluene and related volatile hydrocarbons.


Assuntos
Biofilmes , Reatores Biológicos , Gases/metabolismo , Tolueno/metabolismo , Biodegradação Ambiental , Biomassa , Consumo de Oxigênio , Porosidade , Volatilização
18.
Chemosphere ; 70(3): 516-20, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17720217

RESUMO

N-Nitrosodimethylamine (NDMA) is a disinfection by-product shown to be carcinogenic, mutagenic, and teratogenic. A feasible detoxification pathway for NDMA is a three-step bio-reduction that leads to ammonia and dimethylamine. This study examines the bio-reduction of NDMA in a H2-based membrane biofilm reactor (MBfR) that also is active in nitrate and sulfate reductions. In particular, the study investigates the effects of H2 availability and the relative loadings of NDMA, nitrate, and sulfate, which potentially are competing electron acceptors. The results demonstrate that NDMA was bio-reduced to a major extent (i.e., at least 96%) in a H2-based MBfR in which the electron-equivalent fluxes from H2 oxidation were dominated by nitrate and sulfate reductions. NDMA reduction kinetics responded to NDMA concentration, H2 pressure, and the presence of competing acceptors. The most important factor controlling NDMA-reduction kinetics was the H2 availability, controlled primarily by the H2 pressure, and secondarily by competition from nitrate reduction.


Assuntos
Reatores Biológicos , Dimetilnitrosamina/metabolismo , Poluentes Químicos da Água/metabolismo , Dimetilnitrosamina/análise , Hidrogênio , Nitratos/análise , Nitratos/metabolismo , Oxirredução , Sulfatos/análise , Sulfatos/metabolismo , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Purificação da Água/métodos
19.
Chemosphere ; 65(1): 24-34, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16631886

RESUMO

Arsenate (As(V)) is a carcinogen and a significant problem in groundwater in many parts of the world. Since As(III) is generally more mobile and more toxic than As(V), the reduction of As(V) to As(III) is not a conventional treatment goal. However, reducing As(V) to As(III) may still be a means for decontamination, because As(III) can be removed from solution by precipitation or complexation with sulfide or by adsorption to Fe(II)-based solids. A promising approach for reducing oxidized contaminants is the H2-based membrane biofilm reactor (MBfR). In the case of arsenate, the MBfR allows bio-reduction of As(V) to As(III) and sulfate to sulfide, thereby giving the potential for As removal, such as by precipitation of As2S3(s) or formation of Fe(II)-based solids. When As(V) was added to a denitrifying MBfR, As(V) was reduced immediately to As(III). Decreasing the influent sulfate loading increased As(V) reduction for a fixed H2 pressure. A series of short-term experiments elaborated on how As(V) loading, nitrate and sulfate loadings, and H2 pressure controlled As(V) reduction. Lower nitrate loading and increased As(V) loading increased the extent of As(V) reduction, but increased H2 pressure did not increase As(V) reduction. As(V) reduction was sensitive to sulfate loading, with a maximum As(V)-removal percentage and flux with no addition of sulfate. As(III) could be precipitated with sulfide or adsorbed to Fe(II) solids, which was verified by scanning electron microscopy and energy dispersive X-ray analysis.


Assuntos
Arseniatos/análise , Reatores Biológicos/microbiologia , Hidrogênio/química , Membranas Artificiais , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Biodegradação Ambiental , Biofilmes/crescimento & desenvolvimento , Purificação da Água/instrumentação
20.
Water Res ; 40(8): 1634-42, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16564559

RESUMO

Hexavalent chromium (Cr(VI)) is a mutagen and carcinogen that is a significant concern in water and wastewater. A simple and non-hazardous means to remove Cr(VI) is bioreduction to Cr(III), which should precipitate as Cr(OH)3(s). Since Cr(VI)-reducing bacteria can use hydrogen (H2) as an electron donor, we tested the potential of the H2-based membrane biofilm reactor (MBfR) for chromate reduction and removal from water and wastewater. When Cr(VI) was added to a denitrifying MBfR, Cr(VI) reduction was immediate and increased over 11 days. Short-term experiments investigated the effects of Cr(VI) loading, H2 pressure, and nitrate loading on Cr(VI) reduction. Increasing the H2 pressure improved Cr(VI) reduction. Cr(VI) reduction also was sensitive to pH, with an optimum near 7.0, a sharp drop off below 7.0, and a gradual decline to 8.2. Cr(III) precipitated after a small upward adjustment of the pH. These experiments confirm that a denitrifying, H2-based MBfR can be used to reduce Cr(VI) to Cr(III) and remove Cr from water. The research shows that critical operational parameters include the H2 concentration, nitrate concentration, and pH.


Assuntos
Biofilmes , Reatores Biológicos , Cromatos/química , Hidrogênio/química , Membranas Artificiais , Precipitação Química , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA